Haar-Raum

aus Wikipedia, der freien Enzyklopädie

Ein Haar-Raum, oder Haarscher Raum (benannt nach Alfréd Haar) wird in der Approximationstheorie folgendermaßen definiert:

Besitzen linear unabhängige, auf einem Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b]} stetige Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g_1,\dots,g_n} die Eigenschaft, dass jedes Element Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {f}\in \mathrm{span}\left\{g_1,\dots,g_n\right\}, f \neq 0} , in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b]} höchstens Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (n-1)} Nullstellen hat, dann heißt die Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U:= \mathrm{span}\left\{g_1,\dots,g_n\right\}} Haar-Raum.

Ein System solcher Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g_1,\dots,g_n} , die einen Haar-Raum aufspannen, wird auch Haarsches System oder Tschebyschow-System genannt. Wird eine stetige Funktion durch Elemente eines Haar-Raumes approximiert, so existiert bezüglich der Maximumsnorm stets genau eine beste Approximation.

Interpolation in Haar-Räumen

Hat man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1, \dots, x_n \in [a, b]} paarweise verschiedene Punkte (Stützstellen) und Daten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_i, i = 1, \dots, n} , so existiert genau ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g \in U} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g(x_i) = y_i, i=1, \dots, n} . Dies ist äquivalent zur Regularität der Vandermonde-Matrix.

Beweis Die Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L\colon U \to [a, b]^n, f \to\left(f(x_1), ...f(x_n)\right)} ist linear. Weil jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\in U} höchstens n-1 Nullstellen hat, ist der Kern der Abbildung nur die Nullfunktion, d. h. L ist injektiv. Wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle dim [a, b]^n = n} ist L surjektiv, also insgesamt bijektiv. Daraus folgt Existenz und Eindeutigkeit der Interpolationsfunktion g.

Beispiele

  • Der Vektorraum der Polynome höchstens n-ten Grades ist ein Haar-Raum. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\{1,x,\dots,x^n\right\}} ist ein Haarsches System.
  • Das System Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\{x,\dots,x^n\right\}} ist jedoch kein Haarscher Raum.
  • Die trigonometrischen Polynome bilden ein Haar-Raum mit Haarschem System Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\{1,e^{ix},\dots,e^{i(n-1)x}\right\}} (Polynome in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e^{ix}} ).
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\{1,\sin (x),\cos (x),\dots,\sin (nx),\cos (nx) \right\}, \left\{1,\sin (x),\dots,\sin (nx) \right\}, \left\{1,\cos (x),\dots,\cos (nx) \right\},\; x \in [0,2\pi)} sind jeweils Haarsche Systeme.

Historie

Erstmals formulierte und bewies Haar die Haar condition 1918 in: Die Minkowskische Geometrie und die Annäherung an stetige Funktionen, Mathematische Annalen, Band 78, Seite 294–311. Andere Beweise formulierten Vlastimil Pták 1958 (A remark on approximation of continuous functions in Czechoslovak Math. Journal, Band 8, Seite 251–256) und Singer 1960 (On best approximation of continuous functions in Mathematische Annalen, Band 140, Seite 165–168).[1]

Literatur

  • Günther Hämmerlin, Karl-Heinz Hoffmann: Numerische Mathematik. Springer, Berlin 1994, ISBN 3-540-58033-6

Einzelnachweise

  1. Elliot Ward Cheney: Introduction to Approximation Theory, McGraw-Hill Book Company, 1966, Library of Congress Catalog Card Number 65-25916, ISBN 007-010757-2, Seite 227 + 242 + 248 + 251