Haar-Wavelet
Das Haar-Wavelet ist das erste in der Literatur bekannt gewordene Wavelet und wurde 1909 von Alfréd Haar eingeführt.[1] Es ist außerdem das einfachste bekannte Wavelet und kann aus der Kombination zweier Rechteckfunktionen gebildet werden.
Vorteilhaft am Haar-Wavelet ist die einfache Implementierbarkeit der zugehörigen Wavelet-Transformation als schnelle Wavelet-Transformation (FWT). Der Nachteil des Haar-Wavelets ist, dass es unstetig und daher auch nicht differenzierbar ist.
Die Funktionen der Haar-Wavelet-Basis
Skalierungsfunktion
Die Skalierungsfunktion bzw. „Vater-Wavelet“-Funktion der Haar-Wavelet-Basis ist die Indikatorfunktion des Intervalls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [0,1)} .
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi(x)=\chi_{[0,1)}(x)=\begin{cases}1&0\le x<1\\0&\mbox{sonst}\end{cases}}
Sie erfüllt die Funktionalgleichung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi(x)=\phi(2x)+\phi(2x-1)=\sqrt2\left(a_0\phi(2x)+a_1\phi(2x-1)\right)} mit Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle a_{0}=a_{1}={\frac {1}{\sqrt {2}}}} .
Waveletfunktion
Die Waveletfunktion ist die „zusammengeschobene“ Differenz zweier aufeinanderfolgender Skalierungsfunktionen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \psi(x)=\phi(2x)-\phi(2x-1)=\sqrt2\left(b_0\phi(2x)+b_1\phi(2x-1)\right)=\begin{cases}1&0\le x<1/2\\-1&1/2\le x<1\\0&\mbox{sonst}\end{cases}} ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (b_0,b_1)=(\tfrac1{\sqrt2},-\tfrac1{\sqrt2})} .
Die Schreibweise mit Vorfaktor sorgt dafür, dass die Matrix
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H=\begin{pmatrix}a_0&a_1\\b_0&b_1\end{pmatrix} =\frac1{\sqrt2}\,\begin{pmatrix}1&1\\1&-1\end{pmatrix} }
eine orthogonale Matrix ist. Dies ist Teil der Bedingungen, die orthogonale Wavelets erfordern.
Multiskalenanalyse
Diese Funktion erzeugt die Multiskalenanalyse der Stufenfunktionen. In dieser wird jeder Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \in L^2(\R)} mit „endlicher Energie“ auf jeder Skala Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J\in\Z} die folgende Projektion zugewiesen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\mapsto P_J(f)} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_J(f)(x)=\sum_{n\in\Z}\left(\int_0^1 f\left(2^{-J}(n+t)\right)\,\mathrm dt\right)\cdot\phi(2^Jx-n) } .
Die Differenz zwischen zwei Skalen lässt sich dann durch das „Mutter-Wavelet“ bzw. die eigentliche Waveletfunktion ausdrücken:
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle P_{J+1}(f)(x)-P_{J}(f)(x)=\sum _{n\in \mathbb {Z} }\left(\int _{0}^{1}f\left(2^{-J-1}(2n+t)\right)\,\mathrm {d} t-\int _{0}^{1}f\left(2^{-J-1}(2n+1+t)\right)\,\mathrm {d} t\right)\cdot \psi (2^{J}x-n)} .
Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi_{j,k}(x)={\sqrt2\,}^j\phi({2\,}^jx-k)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \psi_{j,k}(x)={\sqrt2\,}^j\psi({2\,}^jx-k)} als Funktionen im Hilbertraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^2(\R)} gilt
- alle diese Funktionen haben Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^2} -Norm 1,
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi_{j,k}} ist senkrecht zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi_{j,l}} falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k\not=l} ,
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \psi _{i,k}} ist senkrecht zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \psi_{j,l}} falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i\not=j} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k\not=l} ,
- die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \psi_{i,k}} bilden eine Hilbertbasis von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^2(\R)} .
Schnelle Haar-Wavelet-Transformation
Gegeben sei ein diskretes Signal f, welches durch eine endliche oder quadratsummierbare Folge
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f=(\dots,f_{-2},f_{-1},f_0,f_1,f_2,f_3,\dots)}
dargestellt ist. Ihm ist als kontinuierliches Signal die Treppenfunktion
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(x) = \dots+ f_{-1}\phi_{0,-1}(x)+ f_0\phi_{0,0}(x)+ f_1\phi_{0,1}(x)+ f_2\phi_{0,2}(x)+ \dots}
zugeordnet.
Vorwärtstransformation
Aus dem diskreten Signal wird durch paarweises „Senkrechtstellen“ ein vektorwertiges Signal, die sogenannte Polyphasenzerlegung, erzeugt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_p=\left(\dots,\left({f_{-2}\atop f_{-1}}\right),\left({f_0\atop f_1}\right),\left({f_2\atop f_3}\right),\dots\right)} .
Dieser wird nun gliedweise mit der Haar-Transformationsmatrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H:=\frac1{\sqrt2}\begin{pmatrix}1&1\\1&-1\end{pmatrix}} multipliziert
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left({s\atop d}\right)=:Hf_p=\left(\dots,\left({s_{-1}\atop d_{-1}}\right),\left({s_0\atop d_0}\right),\left({s_1\atop d_1}\right),\dots\right)} ,
dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s_k=\frac{f_{2k+1}+f_{2k}}{\sqrt2}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d_k=\frac{f_{2k+1}-f_{2k}}{\sqrt2}} .
Rücktransformation
Wir erhalten ein Mittelwertsignal Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s} und ein Differenzsignal Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d} , aus denen durch einfache Umkehr der vorgenommenen Schritte das Ausgangssignal zurückgewonnen werden kann:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_{2k}=\frac{s_k-d_k}{\sqrt2}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_{2k+1}=\frac{s_k+d_k}{\sqrt2}}
Ist die Schwankung von Glied zu Glied im Ausgangssignal durch ein kleines Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon>0} beschränkt, so ist die Schwankung in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s} durch beschränkt, also immer noch klein, die Größe der Glieder in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d} jedoch durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon/\sqrt{2}} . Ein glattes Signal wird also in ein immer noch glattes Signal halber Abtastfrequenz und in ein kleines Differenzsignal zerlegt. Dies ist der Ausgangspunkt für die Wavelet-Kompression.
Rekursive Filterbank
Wir können den Vorgang wiederholen, indem wir s zum Ausgangssignal erklären und mit obigem Vorgehen zerlegen, wir erhalten eine Folge von Zerlegungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s^0:=f,\; (s^1,d^1),\; (s^2, d^2, d^1),\;\dots,(s^T,d^T,\dots,d^2,d^1)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s^k} hat ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2^k} -tel der ursprünglichen Abtastfrequenz und eine durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2^{k/2}\epsilon} beschränkte Schwankung, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d^k} hat ebenfalls ein -tel der ursprünglichen Abtastfrequenz und durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2^{-k/2}\epsilon} beschränkte Glieder.
Interpretation
Als diskretes Signal Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} wird meist eine reelle Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (f_n)} über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z} mit endlicher Energie betrachtet,
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{n=-\infty}^\infty\,|f_n|^2 < \infty} .
Unter diesen gibt es einige sehr einfache Folgen δn, Kronecker- oder Dirac-Delta genannt, eine für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n\in Z} . Für deren Folgenglieder gilt, dass das jeweils Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -te den Wert hat, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta^n{}_n=1} , und alle anderen den Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta^n{}_k=0} falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k\not= n} .
Jetzt können wir jedes Signal trivial als Reihe im Signalraum schreiben
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f=\sum_{n=-\infty}^\infty\,f_n\cdot\delta^n}
oder als Summe zweier Reihen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f=\sum_{n=-\infty}^\infty\,f_{2n}\cdot\delta^{2n} +\sum_{n=-\infty}^\infty\,f_{2n+1}\cdot\delta^{2n+1}} .
In vielen praktisch relevanten Signalklassen, z. B. bei überabgetasteten bandbeschränkten kontinuierlichen Signalen, sind Werte benachbarter Folgenglieder auch benachbart, d. h. im Allgemeinen liegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_{2n}} und Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f_{2n+1}} dicht beisammen, relativ zu ihrem Absolutbetrag. Dies wird in der obigen Reihen aber überhaupt nicht berücksichtigt. In Mittelwert und Differenz von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_{2n}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_{2n+1}} käme deren Ähnlichkeit stärker zum Ausdruck, der Mittelwert ist beiden Werten ähnlich und die Differenz klein. Benutzen wir die Identität
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle ac+bd={\frac {1}{2}}(a+b)(c+d)+{\frac {1}{2}}(a-b)(c-d)}
um benachbarte Glieder der ersten Reihe bzw. korrespondierende Glieder in der zweiten Zerlegung zusammenzufassen in (skalierten) Mittelwerten und Differenzen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f=\sum_{n=-\infty}^\infty\, \frac{f_{2n}+f_{2n+1}}{\sqrt2}\cdot\frac{\delta^{2n}+\delta^{2n+1}}{\sqrt2} +\sum_{n=-\infty}^\infty\, \frac{f_{2n}-f_{2n+1}}{\sqrt2}\cdot\frac{\delta^{2n}-\delta^{2n+1}}{\sqrt2}}
Jetzt führen wir neue Bezeichnungen ein:
- die neuen Basisfolgen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^n:=\frac{\delta^{2n}+\delta^{2n+1}}{\sqrt2}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b^n:=\frac{\delta^{2n}-\delta^{2n+1}}{\sqrt2}}
- mit den neuen transformierten Koeffizienten
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s_n:=\frac{f_{2n}+f_{2n+1}}{\sqrt2}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d_n:=\frac{f_{2n}-f_{2n+1}}{\sqrt2}} .
Wir erhalten somit die Zerlegung der Haar-Wavelet-Transformation
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f=\sum_{n=-\infty}^\infty\,s_n\cdot a^n+\sum_{n=-\infty}^\infty\,d_n\cdot b^n} .
und mittels des unendlichen euklidischen Skalarproduktes können wir schreiben
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s_n= \langle f,\,a^n \rangle} und Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle d_{n}=\langle f,\,b^{n}\rangle } .
Die letzten drei Identitäten beschreiben eine „Conjugate Quadrature Filterbank (CQF)“, welche so auch für allgemeinere Basisfolgen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^n} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b^n} definiert werden kann. Die Basisfolgen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^n} entstehen alle durch Verschiebung um das jeweilige Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2n} aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^0} , die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b^n} durch Verschiebung aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b^0} . Weiteres dazu im Artikel Daubechies-Wavelets.
Nun enthält die Folge eine geglättete Version des Ausgangssignals bei halber Abtastrate, man kann also auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s} nach dieser Vorschrift zerlegen und dieses Vorgehen über eine bestimmte Tiefe rekursiv fortsetzen. Aus einem Ausgangssignal Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s^0=f} werden also nacheinander die Tupel
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (s^1,d^1)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (s^2,d^2,d^1)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (s^3,d^3,d^2,d^1)} , …
Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} endlich, also fast überall Null, mit Länge , dann haben die Folgen in der Zerlegung im Wesentlichen, d. h. bis auf additive Konstanten, die Längen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left( \tfrac N2, \tfrac N 2 \right)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left( \tfrac N4, \tfrac N4, \tfrac N2 \right)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left( \tfrac N8, \tfrac N8, \tfrac N4, \tfrac N2 \right)} , …
so dass die Gesamtzahl wesentlicher Koeffizienten erhalten bleibt. Die Folgen in der Zerlegung eignen sich meist besser zur Weiterverarbeitung wie Kompression oder Suche nach bestimmtem Merkmalen als das rohe Ausgangssignal.
Modifikationen
Die Polyphasenzerlegung des Ausgangssignals kann auch zu einer anderen Blockgröße s als 2 erfolgen, von der entsprechenden Haar-Matrix ist zu fordern, dass sie eine orthogonale Matrix ist und ihre erste Zeile nur aus Einträgen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1/\sqrt{s}} besteht. Diese Anforderung erfüllen die Matrizen der diskreten Kosinustransformation und die der Walsh-Hadamard-Transformation.
Die Haar-Wavelet-Transformation entspricht einer diskreten Kosinustransformation zur Blockgröße Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s=2} , welche im Bild=Pixelrechteck nacheinander in horizontaler und vertikaler Richtung angewandt wird.
Siehe auch
Literatur
- Alfréd Haar: Zur Theorie der orthogonalen Funktionensysteme, Mathematische Annalen 69, 331–371, 1910, doi:10.1007/BF01456927, insbesondere Kapitel 3 (ab S. 361).
Weblinks
Einzelnachweise
- ↑ Alfred Haar: Zur Theorie der orthogonalen Funktionensysteme. In: Mathematische Annalen. 69, Nr. 3, 1910, S. 331–371. doi:10.1007/BF01456326.