Homogene Funktion

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Homogenitätsgrad)

Eine mathematische Funktion heißt homogen vom Grad , wenn bei proportionaler Änderung aller Variablen um den Proportionalitätsfaktor sich der Funktionswert um den Faktor ändert.

Funktionen dieses Typs sind zum Beispiel in den Naturwissenschaften und in den Wirtschaftswissenschaften wichtig.

Definition

Eine Funktion auf dem -dimensionalen reellen Koordinatenraum

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \Phi :\mathbb {R} ^{n}\to \mathbb {R} }

heißt homogen vom Grad , wenn für alle und

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \Phi (t\cdot x)=t^{\lambda }\cdot \Phi (x)}

gilt.[1] Ist Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \lambda >1} , heißt die Funktion überlinear homogen, bei linear homogen und sonst (Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \lambda <1} ) unterlinear homogen.

Beispiele aus der Mikroökonomie

In der Mikroökonomie spielen homogene Produktionsfunktionen eine wichtige Rolle. Sie stellen einen Zusammenhang zwischen Produktionsfaktoren  und der zugehörigen Produktion her. Bei einer linear homogenen Produktionsfunktion führt ein vermehrter/verminderter Einsatz aller Produktionsfaktoren zu einer im gleichen Verhältnis erhöhten/verminderten Produktion, denn aus folgt

.

Eine solche Produktionsfunktion ist homogen mit dem Homogenitätsgrad 1 (linear homogen). Ein Beispiel für eine homogene Produktionsfunktion vom Grad 1 stellt die Cobb-Douglas-Produktionsfunktion dar.[2] Bei homogenen Produktionsfunktionen stimmt der Homogenitätsgrad mit der Skalenelastizität (nur in einer Richtung) überein. Überlinear homogene Produktionsfunktionen weisen steigende, linear homogene konstante und unterlinear homogene abnehmende Skalenerträge auf. Der Umkehrschluss, von Skalenerträgen auf den Homogenitätsgrad zu schließen, ist jedoch nicht möglich, weil bei Skalenerträgen auch das Faktoreinsatzverhältnis zu ihrer Erzielung geändert werden kann, zur Feststellung der Homogenitätseigenschaft jedoch nicht.

Ein weiteres Beispiel sind Individuelle Nachfragefunktionen Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle x=x(p,E)} . Sie stellen einen Zusammenhang zwischen Preisen , Einkommen  und den nachgefragten Mengen  dar. Kommt es beispielsweise im Zuge einer Währungsumstellung (von DM zu Euro) zu einer Halbierung aller Preise und der Einkommen und wird dies von den Individuen vollständig berücksichtigt (Freiheit von Geldwertillusion), so werden sich die nachgefragten Mengen nicht ändern. Das heißt, es gilt:

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle x(tp,tE)=t^{0}\cdot x(p,E)=x(p,E)}

Nachfragefunktionen sind somit homogen vom Grad 0 in den Preisen und im Einkommen (Nullhomogenität).

Homothetie

Bei ordinalen Nutzenfunktionen ist die Annahme der Homogenität nicht sinnvoll, weil eine streng monoton wachsende Transformation Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle T(u)} einer Nutzenfunktion  dieselben Präferenzen repräsentiert wie die Funktion  selbst. Eine homothetische Nutzenfunktion ist eine streng monoton wachsende Transformation einer homogenen Nutzenfunktion.[3] Bei Nutzenfunktionen mit dieser Eigenschaft verlaufen die Engelkurven linear.

Beispiel: Sei und Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle T(u)=\ln {u}} . Offensichtlich ist die Nutzenfunktion linear homogen. Ihre Transformation ist inhomogen, aber homothetisch; sie repräsentiert dieselbe Präferenzordnung.

Positive Homogenität

Eine Funktion  heißt positiv homogen vom Grad , falls

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \Phi (tx_{1},\dotsc ,tx_{n})=t^{\lambda }\cdot \Phi (x_{1},\dotsc ,x_{n})}

für alle und alle Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle x\in \mathbb {R} ^{n}\setminus \{0\}} gilt.

Im Unterschied zu homogenen Funktionen brauchen positiv homogene Funktionen nur auf Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \mathbb {R} ^{n}\setminus \{0\}} definiert zu sein und der Homogenitätsgrad  kann jede beliebige reelle Zahl sein.

Für solche Funktionen gibt der Eulersche Satz (oder das Euler-Theorem) über positiv homogene Funktionen eine äquivalente Charakterisierung an:

Eine differenzierbare Funktion  ist genau dann positiv homogen vom Grad , wenn gilt

für alle . Hierbei bezeichnen Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\tfrac {\partial \Phi }{\partial x_{i}}}} die partiellen Ableitungen von nach der -ten Komponente von , Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle D_{x}{\Phi (x)}} die Richtungsableitung an der Stelle  in Richtung des Vektors  und Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\text{grad }}\Phi (x)} den Gradienten von .[4][1]

Eine positiv homogene Funktion kann also auf einfache Weise durch die partiellen Ableitungen und Koordinaten dargestellt werden.

Diese Tatsache wird in der Physik sehr häufig benutzt, vor allem in der Thermodynamik, da die dort auftretenden intensiven und extensiven Zustandsgrößen homogene Funktionen nullten bzw. ersten Grads sind. Konkret benutzt man dies z. B. bei der Herleitung der Euler-Gleichung für die innere Energie.

In den Wirtschaftswissenschaften folgt aus dem Eulerschen Theorem für Produktionsfunktionen vom Homogenitätsgrad 1 bei den Faktorpreisen  und dem Güterpreis 

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle y=f(x_{1},\dotsc ,x_{k})=\sum _{i=1}^{n}{\frac {\partial f}{\partial x_{i}}}\cdot x_{i}=\sum _{i=1}^{n}{\frac {q_{i}}{p}}\cdot x_{i}\;\;\Rightarrow \;\;p\cdot y=\sum _{i=1}^{n}q_{i}\cdot x_{i}} .

Bei linear homogenen Produktionsfunktionen ist der Wert des Produkts gleich den Faktorkosten (siehe auch: Ausschöpfungstheorem).

Herleitung des Euler-Theorems

Gegeben sei zunächst eine positiv homogene differenzierbare Funktion . Es gilt also . Differentiation der linken Seite nach liefert mit der Kettenregel

.

Differentiation der rechten Seite nach liefert hingegen

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\frac {\text{d}}{{\text{d}}t}}t^{\lambda }\Phi (x)=\lambda \cdot t^{\lambda -1}\cdot \Phi (x)} .

Durch Einsetzen von folgt die Eulersche Homogenitätsrelation.

Umgekehrt sei nun eine differenzierbare Funktion  gegeben, die die Eulersche Homogenitätsrelation erfüllt. Zu gegebenem betrachten wir die reelle Funktion Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f(t):=\Phi (t\cdot x),t>0} . Wegen der Homogenitätsrelation erfüllt die gewöhnliche Differentialgleichung erster Ordnung

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f'(t)={\frac {\text{d}}{{\text{d}}t}}\Phi (t\cdot x)=t^{-1}\sum _{j=1}^{k}{\frac {\partial \Phi }{\partial x_{j}}}(t\cdot x)\cdot x_{j}t{\overset {\text{Euler Relation}}{=}}{\frac {\lambda }{t}}\Phi (t\cdot x)={\frac {\lambda }{t}}f(t)}

mit der Anfangsbedingung

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f(1)=\Phi (x)} .

Eine Lösung dieses Anfangswertproblems ist und nach einem Eindeutigkeitssatz für gewöhnliche Differentialgleichungen ist die Lösung im Gebiet eindeutig. Das bedeutet aber Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \Phi (t\cdot x)=t^{\lambda }\cdot \Phi (x)} .

Siehe auch

Literatur

Einzelnachweise

  1. a b Homogene Funktion:I/III. In: W. Gelert, H. Kästner, S. Neuber (Hrsg.): Fachlexikon ABC Mathematik. Harri Deutsch, Thun/Frankfurt-Main 1978, ISBN 3-87144-336-0.
  2. Dies ist eine linear homogene Funktion wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(\alpha K(t), \alpha L(t))= A\cdot (\alpha K(t))^a (\alpha L(t))^{1-a}=A\cdot\alpha^a K(t)^a \alpha^{1-a}L(t)^{1-a}=\alpha A\cdot K(t)^a L(t)^{1-a}=\alpha F(K(t),L(t)).}
  3. Hal R. Varian: Microeconomic Analysis. 1992, S. 146 f.
  4. A. Ostrowski: Vorlesungen über Differential- und Integralrechnung. 2. Auflage. Band 2 Differentialrechnung auf dem Gebiete mehrerer Variablen. Birkhäuser Verlag, Basel 1961, Kapitel IV Ergänzung zur Differentialrechnung, § 12 Partielle Ableitungen höherer Ordnung, Abschnitt 63 Eulerscher Satz über homogene Funktionen, S. 169 ff.