Jacobi-Varietät

aus Wikipedia, der freien Enzyklopädie

Die Jacobi-Varietät ist ein komplexer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} -dimensionaler Torus und wird in der Funktionentheorie betrachtet. Der Name geht auf den Mathematiker Carl Gustav Jacob Jacobi zurück, der die Theorie der elliptischen Funktionen entwickelte, in welcher diese Varietät eine wichtige Rolle spielt. Dieses Objekt findet insbesondere Anwendung im Satz von Abel und im jacobischen Umkehrproblem.

Definition

Periodengitter

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} eine kompakte riemannsche Fläche mit Geschlecht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g\geq 1} und sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_1(X)} die Fundamentalgruppe von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} . Es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega_1 , \ldots \omega_g \in \Omega(X)} eine Basis der holomorphen Differentialformen. Dann heißt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \text{Per}(\omega_1, \ldots , \omega_g) := \left\{ \left( \int_\alpha \omega_1 , \ldots , \int_\alpha \omega_g \right) \in \mathbb{C}^g\ |\ [\alpha] \in \pi_1(X) \right\}}

das Periodengitter von .

Aufgrund der Linearität des Integrals erhält man sofort eine additive Gruppenstruktur auf . Das Periodengitter ist ein echtes Gitter.

Jacobi-Varietät

Es sei wie in der obigen Definition Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} eine kompakte riemannsche Fläche mit Geschlecht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega_1 , \ldots , \omega_g} eine Basis von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega(X)} . Dann heißt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \text{Jac(X)} := \mathbb{C}^g / \text{Per}(\omega_1 , \ldots , \omega_g) }

Jacobi-Varietät von .

Eigenschaften

  • Da sowohl als auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{C}^g} eine additive Gruppenstruktur besitzen, kann man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \text{Jac}(X)} als Quotient zweier Gruppen auffassen. Es handelt sich algebraisch also um eine Faktorgruppe.
  • Da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \text{Per}(X)} aber ebenfalls ein Gitter ist, kann man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \text{Jac}(X)} als einen -dimensionalen Torus auffassen, auf welchem man eine Struktur einer komplexen Mannigfaltigkeit definieren kann.
  • Zusammengenommen ist die Jacobi-Varietät eine Lie-Gruppe.

Literatur

  • Otto Forster: Riemannsche Flächen (= Heidelberger Taschenbücher 184). Springer-Verlag, Berlin u. a. 1977, ISBN 0-387-08034-1.