Jordansche Ungleichung

aus Wikipedia, der freien Enzyklopädie
Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\frac {2}{\pi }}x\leq \sin(x)\leq x{\text{ für }}x\in \left[0,{\frac {\pi }{2}}\right]}
Einheitskreis mit spitzem Winkel x. Um E wird ein zweiter Kreis mit Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle |EG|=\sin(x)} gezeichnet.Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align}&|DE|\leq|\widehat{DC}|\leq|\widehat{DG}|\\ \Leftrightarrow &\sin(x) \leq x \leq\tfrac{\pi}{2}\sin(x)\\ \Rightarrow &\tfrac{2}{\pi}x \leq \sin(x)\leq x \end{align}}

Die Jordansche Ungleichung oder Jordan-Ungleichung liefert eine lineare obere und untere Abschätzung der Sinus-Funktion für spitze Winkel. Sie ist nach Camille Jordan benannt.

Ungleichung

Die Jordan-Ungleichung lautet:[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{2}{\pi}x\leq \sin(x) \leq x\text{ für }x \in \left[0,\frac{\pi}{2}\right].}

Sie wird unter anderem in der Funktionentheorie verwandt. Analytisch lässt sie sich mit Hilfe des Mittelwertsatzes der Integralrechnung beweisen.[2] Geometrisch lässt sich ihre Richtigkeit unmittelbar am Einheitskreis mit Hilfe eines zweiten Kreises erkennen (siehe Zeichnung).[3]

Folgerungen, Erweiterungen und verwandte Ungleichungen

Als Folgerung aus der Jordan-Ungleichung erhält man, dass für eine reelle Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 < |x| \leq \frac{\pi}{2}} stets gilt:

 .

Nach US-amerikanischen Mathematikern Raymond Redheffer und J. P. Williams ist die verwandte Redheffer-Williams-Ungleichung benannt:[4][5] Für eine reelle Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \; (x \neq 0)} ist stets

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\frac {\sin(x)}{x}}\geq {\frac {{\pi }^{2}-x^{2}}{{\pi }^{2}+x^{2}}}}  .

Literatur

  • Serge Colombo: Holomorphic Functions of One Variable. Taylor & Francis 1983, ISBN 0-677-05950-7, S. 167–168
  • Feng Qi, Da-Wei Niu, Jian Cao: Refinements, Generalizations, and Applications of Jordan’s Inequality and Related Problems. In: Journal of Inequalities and Applications, Band 2009 (52 Seiten), doi:10.1155/2009/271923
  • Meng-Kuang Kuo: Refinements of Jordan’s inequality. Journal of Inequalities and Applications 2011, 2011:130, doi:10.1186/1029-242X-2011-130
  • Dragoslav Mitrinović: Analytic Inequalities. Springer Verlag (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Band 165), Berlin 1970, ISBN 3-540-62903-3, S. 33

Weblinks

Einzelnachweise

  1. Eric W. Weisstein: Jordan’s inequality. In: MathWorld (englisch).
  2. Serge Colombo: Holomorphic Functions of One Variable. Taylor & Francis 1983, ISBN 0-677-05950-7, S. 167–168
  3. Nach Feng Yuefeng: Proof without words: Jordan’s inequality. In: Mathematics Magazine, Band 69, Nr. 2, 1996, S. 126
  4. Feng Qi, Da-Wei Niu, Jian Cao: Refinements, Generalizations, and Applications of Jordan’s Inequality and Related Problems. In: Journal of Inequalities and Applications, Band 2009 (52 Seiten), doi:10.1155/2009/271923
  5. Dragoslav Mitrinović: Analytic Inequalities. Springer Verlag (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Band 165), Berlin 1970, ISBN 3-540-62903-3, S. 33