Chintschin-Ungleichung

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Kahane-Chintschin-Ungleichung)

Die Chintschin-Ungleichung, benannt nach Alexander Jakowlewitsch Chintschin, ist eine Ungleichung aus dem mathematischen Teilgebiet der Funktionalanalysis. Sie vergleicht Summen von Quadraten mit p-Normen zugehöriger Linearkombinationen von Rademacherfunktionen. Nach der französischen Transskiption des Namens Chintschin findet man diese Ungleichung oft unter der Bezeichnung Khintchine-Ungleichung.

Definitionen

Es seien reelle oder komplexe Zahlen. Diese kann man zu einem Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c = (c_1,\ldots ,c_n)\in \mathbb{K}^n} zusammenfassen, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{K}} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Complex} stehe. Dieser Vektor hat als Element des euklidischen bzw. unitären Vektorraums eine Länge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \|c\|_2 = (|c_1|^2+\ldots +|c_n|^2)^{1/2}} .

Es seien die Rademacherfunktionen. Dann kann man mit den gewählten Zahlen als Koeffizienten die Linearkombination Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle c_{1}r_{1}+\ldots +c_{n}r_{n}} bilden und erhält so eine beschränkte Funktion Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle [0,1]\rightarrow \mathbb {R} } , die offenbar eine Treppenfunktion ist und daher in jedem Lp([0,1]) liegt, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1\le p < \infty} . Die Chintschin-Ungleichung vergleicht die p-Norm dieser Linearkombination mit der Länge des Vektors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} .

Formulierung der Ungleichung

Zu jedem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p\in[1,\infty)} gibt es Konstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_p, B_p > 0} , so dass für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_1,\ldots c_n \in \mathbb{K}} gilt:[1][2]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_p\cdot \|(c_1,\ldots, c_n)\|_2 \le \left\|\sum_{k=1}^n c_kr_k \right\|_p \le B_p\cdot \|(c_1,\ldots, c_n)\|_2 } .

Setzt man die Definitionen der Normen ein, bedeutet das

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_p\cdot \left( \sum_{k=1}^n|c_k|^2\right)^{\frac{1}{2}} \le \left( \int_0^1 \left| \sum_{k=1}^nc_kr_k(t)\right|^p \mathrm{d}t\right)^{\frac{1}{p}} \le B_p\cdot \left(\sum_{k=1}^n|c_k|^2\right)^{\frac{1}{2}}} .

Bemerkungen

Die volle Ungleichung findet sich erstmals bei John Edensor Littlewood,[3] Spezialfälle wurden aber bereits 1923 von Chintschin veröffentlicht,[4] weshalb die Ungleichung seinen Namen trägt.

Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p=2} ist die Ungleichung trivial, es gilt dann sogar Gleichheit. Der Grund liegt darin, dass die Rademacherfunktionen im Hilbertraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^2([0,1])} ein Orthonormalsystem bilden und daher

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\|\sum_{k=1}^nc_kr_k \right\|_2^2 = \sum_{k=1}^n|c_k|^2}

gilt.

Optimale Konstanten

Funktionen (blau) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p\mapsto B_p} (rot)

Die üblichen Beweise der Chintschin-Ungleichung, wie sie sich in den zitierten Lehrbüchern finden, sind nicht besonders aufwändig, liefern aber nur recht grobe Abschätzungen für die Konstanten. Sehr viel schwieriger ist die Ermittlung der optimalen Konstanten, diese wurden von Uffe Haagerup, aufbauend auf Vorarbeiten von Stanisław Szarek, gefunden.[5][6] Es bezeichne Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma} die Gammafunktion und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_0} die Lösung der Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma\left(\frac{p+1}{2}\right) = \frac{\sqrt{\pi}}{2}} ,   das heißt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_0 = 1{,}84742\ldots}

Die optimalen Konstanten für die Chintschin-Ungleichungen in reellen Räumen lauten damit:

und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_p = \begin{cases} 1 & \text{falls } 1\le p \le 2\\ 2^{\frac{1}{2}}\cdot \left(\frac{\Gamma(\frac{p+1}{2})}{\sqrt{\pi}}\right)^{\frac{1}{p}} & \text{falls } 2 < p < \infty \end{cases}}

Anwendung

Aus den Abschätzungen der Chintschinschen-Ungleichung liest man direkt ab, dass der von den Rademacherfunktionen in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^p([0,1])} erzeugte abgeschlossene Unterraum isomorph zum Folgenraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ell^2} der quadrat-summierbaren Folgen ist, das heißt jeder Banachraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^p([0,1])} enthält einen abgeschlossenen und zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ell^2} isomorphen Unterraum. Nachdem Satz von Pitt hat kein für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p\not= 2} diese Eigenschaft. Daher kann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ell^p} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p\not= 2} nicht zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^p([0,1])} isomorph sein. Im Gegensatz dazu besteht nach dem Satz von Fischer-Riesz für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p= 2} sogar eine isometrische Isomorphie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^2([0,1])\cong \ell^2} .

Kahane-Chintschin-Ungleichung

Eine weitere offensichtliche Folgerung aus der Chintschin-Ungleichung ist, dass die verschiedenen p-Normen auf dem von den Rademacher-Funktionen erzeugten Unterraum äquivalent sind. Dies wurde wie folgt von Jean-Pierre Kahane zur sogenannten Kahane-Chintschin-Ungleichung verallgemeinert.[7] Eine Rademacher-Folge ist eine Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\varepsilon_n)_n} von unabhängig und identisch verteilten Zufallsgrößen auf einem Wahrscheinlichkeitsraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\Omega, \Sigma, P)} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(\varepsilon_n=1) = P(\varepsilon_n=-1) = \textstyle \frac{1}{2}} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} . Die Rademacherfunktionen auf dem Wahrscheinlichkeitsraum [0,1] mit dem Lebesguemaß bilden offensichtlich so eine Folge.

Zu jedem Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle 1\leq p<\infty } gibt es eine Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_p} , so dass für jeden Banachraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und jede endliche Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1,\ldots, x_n\in X} und Rademacher-Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\varepsilon_n)_n} die Ungleichungen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{E}\left\|\sum_{k=1}^n\varepsilon_k(\cdot)x_k\right\| \le \left(\mathrm{E} \left\|\sum_{k=1}^n\varepsilon_k(\cdot)x_k\right\|^p \right)^{\frac{1}{p}} \le C_p\cdot \mathrm{E}\left\|\sum_{k=1}^n\varepsilon_k(\cdot)x_k\right\|}

bestehen, wobei E für die Bildung des Erwartungswertes steht.[8]

Einzelnachweise

  1. Raymond A. Ryan: Introduction to Tensor Products of Banach Spaces, Springer-Verlag 2002, ISBN 1-85233-437-1, Theorem 2.24
  2. Joseph Diestel: Sequences and series in Banach spaces, Springer-Verlag (1984), ISBN 0-387-90859-5, Theorem in Kapitel VII
  3. J. E. Littlewood: On a certain bilinear form, Quart. J. Math. Oxford (1930), Band 1, Seiten 164–174
  4. A. Khintchine: Über dyadische Brüche, Math. Zeitschrift (1923), Band 18, Seiten 109–116
  5. Uffe Haagerup: The best constants in the Khintchine inequality, Studia Mathematica (1981), Band 70 Nr. 3, Seiten 231–283
  6. J. S. Szarek: On the best constant on the Khintchine inequality, Studia Mathematica (1976), Band 58, Seiten 197–218
  7. J. P. Kahane: Sur les sommes vectorielles Σ±u, C. R. Acad. Sci. Paris (1964), Band 259, Seiten 2577–2580
  8. F. Albiac, N. J. Kalton: Topics in Banach Space Theory, Springer-Verlag (2006), ISBN 978-1-4419-2099-7, Theorem 6.2.5