Kanonischer Divisor
In der Funktionentheorie ist der kanonische Divisor ein Begriff aus der Theorie riemannscher Flächen.
Definition
Sei eine riemannsche Fläche und Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \omega \in \Omega ^{1}(S)} eine meromorphe 1-Form. Der kanonische Divisor von ist der Divisor
- .
Dabei ist
für eine Darstellung in einer lokalen Koordinate . Der Wert von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle ord(\omega,x)} hängt nur von und nicht vom gewählten Koordinatensystem ab.
Für verschiedene meromorphe 1-Formen auf einer riemannschen Fläche erhält man äquivalente kanonische Divisoren, d. h. ihre Differenz ist ein Hauptdivisor. Die Äquivalenzklasse des kanonischen Divisors ist also unabhängig von der gewählten meromorphen 1-Form wohldefiniert.
Eigenschaften
Der Grad des kanonischen Divisors ist , wobei das Geschlecht der riemannschen Fläche ist.
Der Satz von Riemann-Roch stellt für beliebige Divisoren einen Zusammenhang zwischen den Dimensionen der Lösungsräume von und Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle K-D} her.
Literatur
- Otto Forster: Riemannsche Flächen. (= Heidelberger Taschenbücher 184). Springer, Berlin u. a. 1977, ISBN 3-540-08034-1.