Konjugierte Matrix

aus Wikipedia, der freien Enzyklopädie

Die konjugierte Matrix, kurz Konjugierte, ist in der Mathematik diejenige Matrix, die durch komplexe Konjugation aller Elemente einer gegebenen komplexen Matrix entsteht. Die Umwandlung einer Matrix in ihre konjugierte Matrix wird Konjugation der Matrix genannt. Die Konjugationsabbildung, die einer Matrix ihre Konjugierte zuordnet, ist stets bijektiv, linear und selbstinvers. Viele Kenngrößen konjugierter Matrizen, wie Spur, Determinante und Eigenwerte, sind gerade die komplex Konjugierten der jeweiligen Kenngrößen der Ausgangsmatrizen.

Die konjugierte Matrix wird beispielsweise bei der Definition der adjungierten Matrix verwendet, die durch Konjugation und Transposition einer gegebenen Matrix entsteht. Zudem wird die konjugierte Matrix auch in der Definition der konjugierten Ähnlichkeit von Matrizen eingesetzt.

Definition

Ist eine komplexe Matrix,

dann ist die zugehörige konjugierte Matrix definiert als

.

Die konjugierte Matrix ergibt sich also dadurch, dass alle Einträge der Ausgangsmatrix komplex konjugiert werden. Gelegentlich wird die konjugierte Matrix auch durch notiert, wobei dann allerdings Verwechslungsgefahr mit der adjungierten Matrix besteht, die ebenso bezeichnet wird.

Beispiele

Die Konjugierte der Matrix

ist die Matrix

.

Für eine komplexe Matrix mit ausschließlich reellen Einträgen ist die Konjugierte gleich der Ausgangsmatrix.

Eigenschaften

Rechenregeln

Die folgenden Rechenregeln für konjugierte Matrizen folgen direkt aus den Rechenregeln der komplexen Konjugation. Es gelten

für alle Matrizen , und alle Skalare .

Transponierte

Die Konjugierte der transponierten Matrix ist gleich der Transponierten der konjugierten Matrix, das heißt

.

Diese Matrix wird adjungierte Matrix von genannt und meist mit oder bezeichnet.

Inverse

Die Konjugierte einer regulären Matrix ist stets ebenfalls regulär. Für die Konjugierte der Inversen einer regulären Matrix gilt dabei

.

Die Konjugierte der inversen Matrix ist demnach gleich der Inversen der konjugierten Matrix.

Exponential und Logarithmus

Für das Matrixexponential der Konjugierten einer quadratischen Matrix gilt

.

Entsprechend gilt für den Matrixlogarithmus der Konjugierten einer regulären komplexen Matrix

.

Konjugationsabbildung

Die Abbildung

,

die einer Matrix ihre Konjugierte zuordnet, wird Konjugationsabbildung genannt. Aufgrund der vorstehenden Gesetzmäßigkeiten besitzt die Konjugationsabbildung die folgenden Eigenschaften.

  • Die Konjugationsabbildung ist stets bijektiv, linear und selbstinvers.
  • Im Matrizenraum stellt die Konjugationsabbildung einen Automorphismus dar.
  • In der allgemeinen linearen Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{GL}(n,\Complex)} und im Matrizenring Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Complex^{n \times n}} stellt die Konjugationsabbildung (für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m = n} ) ebenfalls einen Automorphismus dar.

Kenngrößen

Für den Rang der Konjugierten einer Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \in \Complex^{m \times n}} gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{rang}{\bar{A}} = \operatorname{rang}(A)} .

Für die Spur der Konjugierten einer quadratischen Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \in \Complex^{n \times n}} gilt jedoch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{spur}{\bar{A}} = \overline{\operatorname{spur}(A)}} .

Ebenso gilt für die Determinante der Konjugierten einer quadratischen Matrix

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \det{\bar{A}} = \overline{\det(A)}} .

Für das charakteristische Polynom von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{A}} ergibt sich daraus

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \chi_{\bar{A}}(\lambda) = \det(\lambda I - \bar{A}) = \det\overline{(\bar\lambda I - A)} = \overline{\det(\bar\lambda I - A)} = \overline{\chi_{A}(\bar\lambda)}} .

Die Eigenwerte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{A}} sind demnach gerade die komplex Konjugierten der Eigenwerte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} . Auch die zugehörigen Eigenvektoren können komplex konjugiert gewählt werden.

Normen

Für die Frobeniusnorm und die Spektralnorm der Konjugierten einer Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \in \Complex^{m \times n}} gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \| \bar{A} \|_F = \| A \|_F}   und   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \| \bar{A} \|_2 = \| A \|_2} .

Auch für die Zeilensummen- und die Spaltensummennorm der Konjugierten gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \| \bar{A} \|_1 = \| A \|_1}   und   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \| \bar{A} \|_\infty = \| A \|_\infty} .

Diese Matrixnormen bleiben demnach unter Konjugation erhalten.

Verwendung

Spezielle Matrizen

Die konjugierte Matrix wird in der linearen Algebra unter anderem bei folgenden Definitionen verwendet:

  • Die adjungierte Matrix ist diejenige Matrix, die durch Konjugation und Transposition einer gegebenen komplexen Matrix entsteht, also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A^H = \overline{A^T} = (\bar{A})^T} .
  • Eine hermitesche Matrix ist eine komplexe quadratische Matrix, deren Transponierte gleich ihrer Konjugierten ist, das heißt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A^T = \bar{A}} .
  • Eine schiefhermitesche Matrix ist eine komplexe quadratische Matrix, deren Transponierte gleich dem Negativen ihrer Konjugierten ist, das heißt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A^T = -\bar{A}} .
  • Eine komplexe Matrix ist genau dann reell, wenn sie gleich ihrer konjugierten Matrix ist, das heißt, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A = \bar{A}} gilt.

Produkt mit der Konjugierten

Für eine komplexe Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} ist die Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z \bar{z}} als Betragsquadrat stets reell und nichtnegativ. Für eine komplexe quadratische Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \in \Complex^{n \times n}} muss jedoch die Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \bar{A}} nicht notwendigerweise reell sein. Die Determinante von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \bar{A}} ist allerdings stets reell und nichtnegativ, denn es gilt mit dem Determinantenproduktsatz

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \det(A \bar{A}) = \det(A) \cdot \det(\bar{A}) = \det(A) \cdot \overline{\det(A)}} .

Die Eigenwerte der Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \bar{A}} müssen ebenfalls nicht alle reell sein, jedoch treten die nicht-reellen Eigenwerte paarweise komplex konjugiert auf. Die Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \bar{A}} tritt beispielsweise bei der Analyse komplexer symmetrischer Matrizen auf.[1]

Konjugierte Ähnlichkeit

Zwei quadratische Matrizen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A, B \in \Complex^{n \times n}} heißen konjugiert ähnlich (englisch consimilar), wenn eine reguläre Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S \in \Complex^{n \times n}} existiert, sodass

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B = S^{-1}~A~\bar{S}}

gilt. Die konjugierte Ähnlichkeit stellt ebenso wie die normale Ähnlichkeit eine Äquivalenzrelation auf der Menge der quadratischen Matrizen dar. Zwei reguläre Matrizen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A, B \in \Complex^{n \times n}} sind dabei genau dann zueinander konjugiert ähnlich, wenn die Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \bar{A}} ähnlich zu der Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B \bar{B}} ist.[2]

Literatur

  • Siegfried Bosch: Lineare Algebra. Springer, 2006, ISBN 3-540-29884-3.
  • Roger A. Horn, Charles R. Johnson: Matrix Analysis. Cambridge University Press, 2012, ISBN 0-521-46713-6.

Einzelnachweise

  1. Roger A. Horn, Charles R. Johnson: Matrix Analysis. Cambridge University Press, 2012, S. 261 ff.
  2. Roger A. Horn, Charles R. Johnson: Matrix Analysis. Cambridge University Press, 2012, S. 300 ff.

Weblinks