Konsistente Schätzfolge

aus Wikipedia, der freien Enzyklopädie
Datei:Consistency of estimator.svg
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{T_1, T_2 ,\ldots\}} ist eine Folge von Schätzern für den wahren Parameter . Diese Schätzfolge ist konsistent, da sich mit wachsendem Stichprobenumfang Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} die Wahrscheinlichkeitsverteilung des Schätzers immer mehr um den wahren (unbekannten) Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta} konzentriert. Dennoch sind diese Schätzer verzerrt, da sie im Mittel nicht den wahren Parameter treffen. Bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \to \infty} kollabiert die Wahrscheinlichkeitsverteilung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat \theta_n} bei . Die asymptotische Verteilung dieser Schätzfolge ist also eine degenerierte Zufallsvariable, die den Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta} mit Wahrscheinlichkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1} annimmt.

Als eine konsistente Schätzfolge bezeichnet man in der Schätztheorie, einem Teilgebiet der mathematischen Statistik, eine Folge von Punktschätzern, die sich dadurch auszeichnet, dass sie bei größer werdender Stichprobe den zu schätzenden Wert immer genauer schätzt.

Je nach Konvergenzart unterscheidet man schwache Konsistenz (Konvergenz in Wahrscheinlichkeit), starke Konsistenz (fast sichere Konvergenz) sowie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^p } -Konsistenz (Konvergenz im p-ten Mittel) mit dem Spezialfall Konsistenz im quadratischen Mittel (Konvergenz im quadratischen Mittel, Sonderfall der Konvergenz im p-ten Mittel für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p=2} ). Wird von Konsistenz ohne einen Zusatz gesprochen, so ist meist die schwache Konsistenz gemeint. Alternativ finden sich auch die Bezeichnungen konsistente Folge von Schätzern und konsistenter Schätzer, wobei Letzteres fachlich nicht korrekt ist. Allerdings ist die Konstruktion als Folge meist nur dadurch bedingt, dass die größer werdende Stichprobe formalisiert werden muss. Die der Folge zugrundeliegende Idee bleibt meist unverändert.

Das Konzept der Konsistenz lässt sich auch für statistische Tests formulieren, man spricht dann von konsistenten Testfolgen.

Definition

Rahmenbedingungen

Gegeben sei ein statistisches Modell

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X^{\N}, \mathcal A^{\N}, (P_\vartheta^{\N})_{\vartheta \in \Theta}) }

und eine Folge von Punktschätzern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (T_n)_{n \in \N} } in einen Ereignisraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (E, \mathcal E) }

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle T_{n}\colon (X^{n},{\mathcal {A}}^{n})\to (E,{\mathcal {E}})} ,

die nur von den ersten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n } Beobachtungen abhängen. Sei

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau \colon \Theta \to E }

eine zu schätzende Funktion.

Konsistenz oder schwache Konsistenz

Die Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (T_n)_{n \in \N} } heißt eine schwach konsistente Schätzfolge oder einfach eine konsistente Schätzfolge, wenn sie für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vartheta \in \Theta } in Wahrscheinlichkeit gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau(\vartheta) } konvergiert. Es gilt also

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty}P_\vartheta(|T_n - \tau(\vartheta)| \geq \epsilon)= 0 }

für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon > 0 } und alle . Unabhängig davon, welches der Wahrscheinlichkeitsmaße Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_\vartheta } wirklich vorliegt, ist also für beliebig groß werdende Stichproben die Wahrscheinlichkeit, dass der geschätzte Wert sehr nah an dem zu schätzenden Wert liegt, gleich 1.

Weitere Konsistenzbegriffe

Die weiteren Konsistenzbegriffe unterscheiden sich nur bezüglich der verwendeten Konvergenzart von dem obigen schwachen Konsistenzbegriff. So heißt die Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (T_n)_{n \in \N} }

  • stark konsistent, wenn sie für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_\vartheta } fast sicher gegen Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \tau (\vartheta )} konvergiert;
  • im p-ten Mittel konsistent, wenn sie für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_\vartheta } im p-ten Mittel gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau(\vartheta) } konvergiert;
  • im quadratischen Mittel konsistent, wenn sie für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p=2} im p-ten Mittel konsistent ist.

Detaillierte Beschreibungen der Konvergenzarten sind in den entsprechenden Hauptartikeln zu finden.

Eigenschaften

Aufgrund der Eigenschaften der Konvergenzarten gilt: Sowohl aus der starken Konsistenz als auch aus der Konsistenz im p-ten Mittel folgt die schwache Konsistenz; alle anderen Implikationen sind im Allgemeinen falsch.

Wichtige Hilfsmittel, um starke und schwache Konsistenz zu zeigen, sind das starke Gesetz der großen Zahlen und das schwache Gesetz der großen Zahlen.

Beispiel

Es lässt sich zeigen, dass der Kleinste-Quadrate-Schätzer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat {\boldsymbol \beta}=(\mathbf{X}^\top \mathbf X )^{-1}\mathbf {X}^\top \mathbf y } , der durch die Methode der kleinsten Quadrate gewonnen wird, konsistent für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol \beta} ist, d. h., für ihn gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat {\boldsymbol \beta}\;\stackrel{p}{\longrightarrow}\; \boldsymbol \beta} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{plim}(\hat \boldsymbol \beta) = \boldsymbol \beta} .

Die grundlegende Annahme, um die Konsistenz des KQ-Schätzers sicherzustellen, ist die Konvergenz

,

gegen eine invertierbare Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{Q}} , d. h. man geht insbesondere also davon aus, dass das durchschnittliche Quadrat der beobachteten Werte der erklärenden Variablen auch bei einem ins Unendliche gehendem Stichprobenumfang endlich bleibt (siehe Produktsummenmatrix#Asymptotische Resultate). Außerdem nimmt man an, dass

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{plim}\left(\frac{\mathbf{X}_n^\top \boldsymbol \varepsilon}{n}\right) = 0} .

Die Konsistenz kann wie folgt gezeigt werden:[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \operatorname{plim}(\mathbf b) &= \operatorname{plim}((\mathbf{X}_n^\top \mathbf X_n )^{-1}\mathbf {X}_n^\top \mathbf y)\\ &= \operatorname{plim}(\boldsymbol \beta+(\mathbf{X}_n^\top \mathbf{X}_n )^{-1}\mathbf{X}_n^\top \boldsymbol \varepsilon))\\ &= \boldsymbol\beta+\operatorname{plim}((\mathbf{X}_n^\top \mathbf{X}_n )^{-1}\mathbf {X}_n^\top \boldsymbol \varepsilon)\\ &= \boldsymbol \beta+\operatorname{plim}\left(((\mathbf{X}_n^\top \mathbf{X}_n )^{-1} n) \right) \cdot \operatorname{plim}\left( ((\mathbf{X}_n^\top \boldsymbol \varepsilon)/ n)\right)\\ &= \boldsymbol \beta+[\operatorname{plim}\left(((\mathbf{X}_n^\top \mathbf X_n )/n) \right)]^{-1} \cdot \underbrace{\operatorname{plim}\left( ((\mathbf{X}_n^\top \boldsymbol \varepsilon)/ n)\right)}_{=0}=\boldsymbol \beta+ \mathbf{Q}^{-1} \cdot 0 = \boldsymbol \beta \end{align}} .

Hierbei wurde das Slutsky-Theorem und die Eigenschaft verwendet, dass, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{X}} deterministisch bzw. nichtstochastisch ist, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{plim}\left((\mathbf{X}_n^\top \mathbf X_n )/n \right) = \lim\left((\mathbf{X}_n^\top \mathbf X_n )/n \right)} gilt.

Weblinks

Literatur

  • Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, doi:10.1515/9783110215274.
  • Ludger Rüschendorf: Mathematische Statistik. Springer Verlag, Berlin/Heidelberg 2014, ISBN 978-3-642-41996-6, doi:10.1007/978-3-642-41997-3.
  • Claudia Czado, Thorsten Schmidt: Mathematische Statistik. Springer-Verlag, Berlin/Heidelberg 2011, ISBN 978-3-642-17260-1, doi:10.1007/978-3-642-17261-8.

Einzelnachweise

  1. George G. Judge, R. Carter Hill, W. Griffiths, Helmut Lütkepohl, T.C. Lee. Introduction to the Theory and Practice of Econometrics. John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore, ISBN 978-0471624141, second edition 1988, S. 266.