Konzentration des Maßes

aus Wikipedia, der freien Enzyklopädie

Unter der Konzentration des Maßes versteht man ein mathematisches Phänomen aus der Maßtheorie, welches an vielen Stellen in der Stochastik auftritt, aber auch in anderen Gebieten wie der Funktionalanalysis und der Kombinatorik.

Wesentliche Arbeit zur Konzentration des Maßes stammt aus den 1970ern von Vitali Milman aus dem Studium der asymptotischen Geometrie von Banachräumen, welcher die Vorarbeit von Paul Lévy weiterführte.[1]

Anschaulich kann man die Konzentration des Maßes in der Stochastik als den Effekt interpretieren, dass Funktionen mit vielen kleinen lokalen Fluktuationen sich mit großer Wahrscheinlichkeit wie Konstanten verhalten.

Lévys isoperimetrische Ungleichung

Die isoperimetrische Ungleichung auf der Sphäre stammt von Lévy.[2]

Wir betrachten den Raum wobei die euklidische Norm und das sphärische Wahrscheinlichkeitsmaß auf bezeichnet. Dieses ist normiert und rotations-invariant auf , das bedeutet und für ein und eine Rotation gilt .

Sei nun , definiere die geodäsische Distanz und mit bezeichnen wir das -Verfetten der Menge

.

Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} bezeichnen wir das Kugelsegment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B:=\left\{ x \in \mathbb{S}^{n-1} | \operatorname{d}(x, x_0) \leq p \right\}} um einen Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0} für ein passendes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} , so dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(A)=\mu(B)} . Dann gilt für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t> 0}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(A_t)\geq \mu(B_t)} .

Nehme nun an, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(A)=1/2} dann gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(A_t)\geq \mu(B_t)=1-\int_t^{\tfrac{\pi}{2}} \cdots \mathrm{d}\theta\geq 1-\tfrac{1}{2}e^{-(n-1)\tfrac{t^2}{2}}=1-Ce^{-c(n-1)t^2}}

und somit verkleinert sich das Maß der Komplementärmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_t^c} exponentiell bei Wachstum des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} , sobald Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(A)=1/2} erreicht hat

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(A_t^c)\leq Ce^{-c(n-1)t^2}} .

Es kommt zur Konzentration des Maßes auf der Sphäre.

Vitali Milman nützte dieses Resultat in seinem Beweis des Satzes von Dvoretzky.

Konzentration des Maßes

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (M_n,d_n,\mu_n)} ein Familie metrischer Wahrscheinlichkeitsräume. Definiere die Konzentrationsraten

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha_n(t):=\sup\limits_{A\subset M_n:\mu_n(A)\geq 1/2}\mu_n(d_n(M_n,A)\geq t)=\sup\limits_{A\subset M_n:\mu_n(A)\geq 1/2}\mu_n(A_t^c)}

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_t} das Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} -Verfetten bezeichnet.

Dann wird Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (M_n,d_n,\mu_n)} Lévy-Familie genannt, falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall t>0}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha_n(t)\to 0\ \text{wenn }n\to\infty}

und normale Lévy-Familie, falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall t>0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n\geq 1} (oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} groß genug)

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha_n(t) \leq Ce^{-c n t^2}}

für zwei Konstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c,C>0} .

Einzelnachweise

  1. Michel Ledoux: The Concentration of Measure Phenomenon. American Mathematical Society, 2001, ISBN 978-0-8218-2864-9.
  2. Stephane Boucheron, Gabor Lugosi, Pascal Massart: Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, USA 2013, ISBN 978-0-19-953525-5.