Kreuzkorrelation

aus Wikipedia, der freien Enzyklopädie

In der Signalanalyse wird die Kreuzkorrelationsfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_{xy}(\tau) } zur Beschreibung der Korrelation zweier Signale Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x(t) } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y(t) } bei unterschiedlichen Zeitverschiebungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau} zwischen den beiden Signalen eingesetzt. Kreuz steht hierbei für den Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \neq y } der Funktion:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_{xy} (t_1,t_2) = E\{\textbf{X}(t_1) \cdot \textbf{Y}(t_2)\}}

Handelt es sich um einen schwach stationären Prozess, so ist die Korrelationsfunktion nicht mehr von der Wahl der Zeitpunkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_2} , sondern nur von deren Differenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau = t_2 - t_1} abhängig.

Die Kreuzkorrelations-Operation ist identisch mit der komplex konjugierten Faltung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline{f(-t)}} (s. en:Cross-correlation#Properties). Insbesondere im Fachgebiet Maschinelles Lernen, wo man mit Convolutional Neural Networks arbeitet, wird aufgrund dieser Identität meistens die Kreuzkorrelation verwendet, diese aber als Faltung bezeichnet, weil sie leichter zu implementieren ist.[1][2]

Definition

Es gilt für Energiesignale:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_{xy}(\tau) = (x \star y)(\tau) = (x^*(-t) * y(t))(\tau) = \int_{-\infty}^{\infty} x^*(t) \, y(t + \tau) \,\mathrm dt}

und für Leistungssignale:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_{xy}(\tau) = (x \star y)(\tau) = (x^*(-t) * y(t))(\tau) = \lim_{T \to \infty} \frac{1}{2T}\int_{-T}^{T} x^*(t) \, y(t + \tau) \,\mathrm dt}

mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^*} als der konjugiert komplexen Funktion von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} , dem Operatorsymbol Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \star} als Kurzschreibweise der Kreuzkorrelation und als dem der Faltungsoperation.

Analog wird die diskrete Kreuzkorrelation, diese spielt im Bereich der diskreten Signalverarbeitung eine wesentliche Rolle, mit der Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [m]} und einer Verschiebung festgelegt als:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_{xy}[n]} = Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x \star y)[n] = \sum_{m=-\infty}^{\infty} x^*[m]\ y[m+n]} (Energiesignale)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_{xy}[n]} = Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x \star y)[n] = \lim_{M \to \infty} \frac{1}{2M + 1}\sum_{m=-M}^{M} x^*[m]\ y[m+n]} (Leistungssignale)

In der digitalen Signalverarbeitung wiederum ist eine endliche Mittelung mit Argumenten beginnend bei Index 0 auf Grund der Architektur von Rechnerregistern erforderlich, wovon es eine vor- und eine unvorgespannte Version gibt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_{xy}[m] := \begin{cases} \ \;\, \frac{1}{N-|m|} \sum_{n=0}^{N-m-1} x[n]y[n+m]&\text{für } m \ge 0\\ \ \;\, \frac{1}{N-|m|} \sum_{n=-m}^{N-1} x[n]y[n+m] &\text{für } m < 0 \end{cases} } (Vorspannversion)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_{xy}[m] := \begin{cases} \ \;\, \frac{1}{N} \sum_{n=0}^{N-m-1} x[n]y[n+m]&\text{für } m \ge 0\\ \ \;\, \frac{1}{N} \sum_{n=-m}^{N-1} x[n]y[n+m] &\text{für } m < 0 \end{cases} } (unvorgespannte Version)

Die Kreuzkorrelation ist mit der Kreuzkovarianz eng verwandt.

Eigenschaften

[[Hilfe:Cache|Fehler beim Thumbnail-Erstellen]]:
Zusammenhang zwischen Faltung, Kreuzkorrelation und Autokorrelation.

Für alle gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_{xy}(\tau) = R_{yx}(-\tau)}

sowie

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left| R_{xy}(\tau) \right| \leq \sqrt{R_{xx}(0)R_{yy}(0)} \leq \frac{1}{2} (R_{xx}(0)+ R_{yy}(0))}

und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim \limits_{\tau \to \pm \infty} R_{xy}(\tau)=0}

mit den Autokorrelationsfunktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_{xx}(\tau)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_{yy}(\tau)} .

Sie zeigt z. B. Spitzen bei Zeitverschiebungen, die der Signallaufzeit vom Messort des Signals Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x(t)} zum Messort des Signals entsprechen. Auch Laufzeitunterschiede von einer Signalquelle zu beiden Messorten können auf diese Weise festgestellt werden. Die Kreuzkorrelationsfunktion eignet sich daher besonders zur Ermittlung von Übertragungswegen und zur Ortung von Quellen.

Rechentechnisch wird die Kreuzkorrelationsfunktion in der Regel über die inverse Fouriertransformation des Kreuzleistungsspektrums Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_{XY}(f) } ermittelt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_{xy}(\tau) = \int_{-\infty}^\infty S_{XY}(f) \, e^{\mathrm{i} 2 \pi f \tau} \,\mathrm df }

Verbindung mit der Kreuzkovarianz

Ist eines der Signale Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x(t) } oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y(t) } nullsymmetrisch, d. h. ihr Mittelwert über das Signal ist Null Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle ({\bar {x}}(t)=0} oder Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\bar {y}}(t)=0)} , ist die Kreuzkorrelation identisch mit der Kreuzkovarianz. Bekannte Vertreter der nullsymmetrischen Funktionen sind zum Beispiel die Sinus- und Kosinusfunktionen.

Literatur

  • Bernd Girod, Rudolf Rabenstein, Alexander Stenger: Einführung in die Systemtheorie. 4. Auflage. Teubner, Wiesbaden 2007, ISBN 978-3-8351-0176-0.
  • Rüdiger Hoffmann: Signalanalyse und -erkennung. Springer, ISBN 3-540-63443-6.

Siehe auch

Weblinks

Einzelnachweise

  1. Ian Goodfellow, Yoshua Bengio und Aaron Courville: Deep Learning. Hrsg.: MIT Press. S. 328 - 329 (deeplearningbook.org).
  2. Conv2d. In: Dokumentation PyTorch. Abgerufen am 5. Februar 2021.