Krulltopologie
Die Krulltopologie, nach Wolfgang Krull, ist eine Topologie auf der Galoisgruppe einer nicht notwendigerweise endlichen Körpererweiterung , so dass diese zu einer so genannten topologischen Gruppe wird.
Definition für Galoiserweiterungen
Es sei eine nicht notwendigerweise endliche galoissche Körpererweiterung. Für eine unendliche Erweiterung bedeute dabei galoissch, dass die Erweiterung separabel ist und zu jeder endlichen galoisschen Teilerweiterung auch die normale Hülle von enthält.
Es gibt verschiedene Möglichkeiten, die Krulltopologie zu definieren:
1. Man definiert die Umgebungsbasis des neutralen Elements als die Menge
der Galoisgruppen für über endliche Teilerweiterungen .[1]
2. Es gibt eine kanonische Bijektion
wobei alle über endlichen Teilerweiterungen durchläuft. Versieht man die endlichen Gruppen mit der diskreten Topologie und den projektiven Limes mit der Limestopologie, so erhält man dieselbe Topologie wie unter 1. Mit dieser Darstellung ist ersichtlich, dass eine proendliche Gruppe ist.
Hauptsatz der Galoistheorie
Die Bedeutung der Krulltopologie liegt darin begründet, dass sie es ermöglicht, den Hauptsatz der Galoistheorie auf unendliche Galoiserweiterungen auszudehnen: Ist eine unendliche Galoiserweiterung, so gibt es eine kanonische Bijektion zwischen Teilerweiterungen und abgeschlossenen Untergruppen von : Einer Erweiterung entspricht die Untergruppe
einer Untergruppe die Erweiterung
Eine Teilerweiterung ist genau dann normal (und damit galoissch), wenn ein Normalteiler in ist; die Galoisgruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(M/K)} ist kanonisch isomorph zum Quotienten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(L/K)/G(L/M)} .
Darstellungen
Es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} ein Körper und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K^{\mathrm{sep}}} ein separabler Abschluss von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} . Weiter sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} ein Vektorraum (über irgendeinem Körper). Versieht man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{GL}(V)} mit der diskreten Topologie, so sind Darstellungen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(K^{\mathrm{sep}}/K)} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} genau dann stetig, wenn sie über einen endlichen Quotienten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(M/K)} für eine endliche Erweiterung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M/K} faktorisieren. Die Kategorie der stetigen Darstellungen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(K^{\mathrm{sep}}/K)} ist also in diesem Sinne die Vereinigung aller Kategorien von Darstellungen der Gruppen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(M/K)} für endliche Erweiterungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M/K} .
Verallgemeinerung: Nicht algebraische Erweiterungen
Es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L/K} eine beliebige Körpererweiterung. Die Krulltopologie auf der Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Aut}(L/K)} der Körperautomorphismen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L} , die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} elementweise festlassen, ist diejenige Topologie, für die die Untergruppen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(S)=\{\sigma\in\operatorname{Aut}(L/K)\mid \sigma s=s\ \mathrm{f\ddot ur\ alle}\ s\in S\}}
für endliche Teilmengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S\subseteq L} eine Umgebungsbasis des Einselementes bilden. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Aut}(L/K)} wird mit dieser Topologie zu einer topologischen Gruppe.
Einzelnachweise
- ↑ Ina Kersten: Brauergruppen. Universitätsdrucke Göttingen, 2007, ISBN 978-3-938616-89-5, §15.2 (Online [abgerufen am 26. Januar 2017]).