Kugelausschnitt

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Kugelsektor)
Kugelsektor (blau)

Ein Kugelausschnitt oder Kugelsektor bezeichnet in der Mathematik einen kegelartigen Ausschnitt vom Mittelpunkt einer Kugel bis zu ihrer Oberfläche. Ein Sonderfall ist die Halbkugel.

Formeln

Für die Berechnung von Volumen, Mantelfläche und Oberfläche eines Kugelausschnitts gelten die folgenden Formeln. Dabei bezeichnet den Radius der Kugel, den Radius des Basiskreises des Kugelsegments und die Höhe des Kugelsegments.

Diese drei Größen sind nicht unabhängig voneinander. Der Kugelausschnitt ist durch zwei beliebige dieser drei Größen bestimmt. Aus zwei der drei Größen lässt sich die dritte berechnen. In allen Formeln ist − bei ± zu nehmen, wenn der Kugelausschnitt weniger als die halbe Kugel groß ist, sonst + bei ±.

Statt und reicht auch die Angabe des Winkels des Basiskreises (siehe Abbildung). Es gilt:

Es gibt deshalb jeweils mehrere Formeln, je nachdem, welche der Größen gegeben sind.

Größen eines Kugelausschnitts mit dem Radius r der Kugel, dem Radius a des Basiskreises und der Höhe h
Volumen
Flächeninhalt der Mantelfläche des Kegels
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_K = \pi \cdot a \cdot r}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_K = \pi \cdot r^2 \cdot \sin(\theta_0)}
Flächeninhalt der Mantelfläche des Kugelsegments Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_S = 2 \cdot \pi \cdot r \cdot h}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_S = \pi \cdot (a^2 + h^2)}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_S = 2 \cdot \pi \cdot r \cdot (r \pm \sqrt{r^2 - a^2})}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_S = 2 \cdot \pi \cdot r^2 \cdot (1 - \cos(\theta_0))}
Oberflächeninhalt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle O = \pi \cdot r \cdot (a + 2 \cdot h)}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle O = \pi \cdot \frac{(a + 2 \cdot h ) \cdot (a^2 + h^2)}{2 \cdot h}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle O = \pi \cdot r \cdot (a + 2 \cdot (r \pm \sqrt{r^2 - a^2}))}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle O = \pi \cdot r^2 \cdot (2 - 2 \cdot \cos(\theta_0) + \sin(\theta_0))}

Sonderfälle

Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h = r} ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a = r} und der Kugelausschnitt eine Halbkugel: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V = \tfrac{2 \cdot \pi}{3} \cdot r^3, \ M = 2 \cdot \pi \cdot r^2,\ O = 3 \cdot \pi \cdot r^2.}

Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h = 2 \cdot r} ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a = 0} und der Kugelausschnitt ist eine ganze Kugel: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V = \tfrac{4 \cdot \pi}{3} \cdot r^3, \ M = O = 4 \cdot \pi \cdot r^2.}

Herleitung

Zur Herleitung dieser Formeln nimmt man eine Unterteilung in zwei Körper vor: Kegel und Kugelsegment. Der Kegel hat den Grundkreisradius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} und die Höhe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r-h} .

Das Volumen des Kegels ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_K = \frac{\pi}{3} \cdot a^2 \cdot (r - h)}

Das Kugelsegment hat das Volumen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_S = \frac{\pi}{3} \cdot h^2 \cdot (3 \cdot r - h)}

Also ist das Volumen des Kugelsektors

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V = V_K + V_S = \frac{\pi}{3} \cdot a^2 \cdot (r - h) + \frac{\pi}{3} \cdot h^2 \cdot (3 \cdot r - h)}

Aus dem Satz des Pythagoras ergibt sich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^2 = 2 \cdot h \cdot r - h^2} . Einsetzen und Auflösen der Klammern liefert schließlich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V = \frac{2 \cdot \pi}{3} \cdot r^2 \cdot h}

Eine weitere Möglichkeit das Volumen zu berechnen bieten Kugelkoordinaten:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V = \int_0^{\theta_0} \int_0^{2 \cdot \pi} \int_0^r \rho^2 \cdot \sin(\theta) \, \mathrm{d}\rho \, \mathrm{d}\phi \, \mathrm{d}\theta = \frac{2 \cdot \pi}{3} \cdot r^3 \cdot \int_0^{\theta_0} \sin(\theta) \, \mathrm{d}\theta = \frac{2 \cdot \pi}{3} \cdot r^3 \cdot (1 - \cos(\theta_0)) }

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta_0} der halbe Öffnungswinkel des Kegelteiles ist. Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h=r(1-\cos\theta_0) } folgt die obige Formel für das Volumen.

Die Mantelfläche des Kegels ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_K = \pi \cdot a \cdot r}

und die Oberfläche des Kugelsegments (ohne Basiskreis) ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_S = 2 \cdot \pi \cdot r \cdot h} .

Damit ist die Oberfläche

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle O = M_K + M_S = \pi \cdot r \cdot (a + 2 \cdot h)}

Siehe auch

Weblinks

Literatur

  • Bronstein-Semendjajew: Taschenbuch der Mathematik. Harri-Deutsch-Verlag, 1983, ISBN 3-87144-492-8, S. 252.
  • Kleine Enzyklopädie Mathematik, Harri Deutsch-Verlag, 1977, S. 215.