Exakte Sequenz
Der Begriff der exakten Sequenz oder exakten Folge spielt eine zentrale Rolle im mathematischen Teilgebiet der homologischen Algebra. Besonders wichtig sind die kurzen exakten Sequenzen.
Definition
Eine Sequenz
von Objekten und Morphismen in einer geeigneten Kategorie heißt exakt an der Stelle , wenn
gilt, d. h. wenn das Bild eines Pfeils gleich dem Kern des nächsten ist. Eine längere Sequenz
heißt exakt, wenn sie exakt an den Stellen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_2} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_3} und ist (analog für kürzere oder längere Sequenzen).
Geeignet in diesem Sinne ist eine Kategorie offenbar nur dann, wenn sinnvoll von Kern und Bild gesprochen werden kann. Dies ist der Fall für alle abelschen Kategorien, aber auch beispielsweise für die Kategorie Grp der Gruppen und Gruppenhomomorphismen.
Beispiele
- Ist ein Homomorphismus zwischen abelschen Gruppen, dann ist und . Die Folge ist daher exakt an der Stelle , wenn ist.
- Eine Sequenz Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle 0\longrightarrow A'\;{\overset {f}{\longrightarrow }}\;A} ist genau dann exakt, wenn ein Monomorphismus, d. h. injektiv ist. Unter Verwendung eines Hakenpfeils kann dies auch mit 2 Termen geschrieben werden:Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle A'\;{\overset {f}{\hookrightarrow }}\;A}
- Eine Sequenz
- ist genau dann exakt, wenn Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle g\colon A\to A''} ein Epimorphismus, d. h. surjektiv ist. Unter Verwendung eines Zweispitzenpfeils kann dies auch mit 2 Termen geschrieben werden:
- Für jeden Homomorphismus von Vektorräumen (abelschen Gruppen, Moduln, jeden Morphismus einer abelschen Kategorie) existiert eine exakte Sequenz, wie folgt:
- In Grp ist die Sequenz jedoch bei nur exakt, wenn das Bild von ein Normalteiler in ist. Auch in additiven, aber nicht abelschen Kategorien ist die Exaktheit nicht notwendigerweise gegeben. Dabei bezeichnet Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \operatorname {coker} f} den Kokern von .
- Für eine Gruppe seien
- das Zentrum,
- die Gruppe der Automorphismen,
- die Gruppe der inneren Automorphismen und
- die Gruppe der äußeren Automorphismen
- von . Dann ist die Sequenz
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle 1\longrightarrow Z(G)\longrightarrow G\longrightarrow \mathrm {Aut} \,G\longrightarrow \mathrm {Out} \,G\longrightarrow 1}
- exakt. Der mittlere Pfeil ist dabei durch
- gegeben.
Kurze exakte Sequenzen
Definition
Eine exakte Sequenz der Form
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle 0\longrightarrow A'\longrightarrow A\longrightarrow A''\longrightarrow 0}
heißt kurze exakte Sequenz.
Zerfallende kurze exakte Sequenzen
Eine kurze exakte Sequenz zerfällt, wenn Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle A\to A''} einen Schnitt hat. Vereinzelt wird anstatt zerfällt auch die Bezeichnung spaltet auf benutzt, die auf eine nicht ganz korrekte Übersetzung des englischen Begriffs split zurückzuführen ist.
In einer additiven Kategorie folgt hieraus auch, dass eine Retraktion hat, dass die entstehende Sequenz
ebenfalls exakt ist und dass diese Sequenzen isomorph zu
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle 0\longrightarrow A'\longrightarrow A'\oplus A''\longrightarrow A''\longrightarrow 0}
bzw.
sind.
Zerfällt eine kurze exakte Sequenz in der Kategorie der Gruppen, ergibt sich daraus lediglich eine Operation von auf , und dass semidirektes Produkt von und bezüglich dieser Operation ist. Beispielsweise ist die zyklische Gruppe Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \mathbb {Z} /3\mathbb {Z} } Untergruppe der symmetrischen Gruppe , woraus sich die kurze exakte Sequenz
ergibt; indem man das nicht-neutrale Element der auf ein Element der Ordnung 2 in abbildet, erhält man eine Spaltung.
Aufteilung einer langen exakten Sequenz
Jede lange exakte Folge lässt sich in kurze exakte Folgen zerlegen, indem man Kerne und Kokerne einfügt: Ist
eine exakte Sequenz, so sei
Dann gibt es kurze exakte Sequenzen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0\longrightarrow Z_n\longrightarrow A_n\longrightarrow Z_{n+1}\longrightarrow0.}
Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (A_*)} ein Kettenkomplex, so ist die Exaktheit all dieser kurzen Sequenz äquivalent zur Exaktheit der langen Sequenz.
Erweiterungen
Im Kontext einer kurzen exakten Sequenz
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0\longrightarrow A'\longrightarrow A\longrightarrow A''\longrightarrow0}
sagt man auch, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} eine Erweiterung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A''} durch ist.
Ist zum Beispiel ein Normalteiler in der Gruppe und die Faktorgruppe, so erhält man eine kurze, exakte Sequenz
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0\longrightarrow N\longrightarrow G\longrightarrow G/N\longrightarrow0} ,
wobei der zweite Pfeil die Einbettung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} und der dritte die Quotientenabbildung ist. Damit ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} eine Erweiterung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G/N} und man kann die Frage nach einer Klassifikation aller möglichen Erweiterungen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G/N} stellen. Entsprechende Fragestellungen erhält man etwa in der Kategorie der Ringe oder Moduln über einem festen Ring. Dies führt zu mathematischen Begriffen wie Ext oder Gruppenkohomologie.
Siehe auch
Literatur
- Siegfried Bosch: Lineare Algebra. Springer Verlag, 2008, ISBN 978-3-540-76437-3, S. 77–79.