Längentreue Abbildung
Eine längentreue Abbildung ist ein Objekt aus der Mathematik. Sie ist eine Abbildungen zwischen zwei Flächen, die den Abstand zweier Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q} stets mit dem Abstand der zugehörigen Bildpunkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P'} und unverändert lässt.[1]
Beispiele für längentreue Abbildungen sind Achsenspiegelungen, Punktspiegelungen, Verschiebungen und Drehungen. Dagegen sind zentrische Streckungen im Allgemeinen nicht längentreu.
Besondere Bedeutung hat der Begriff für den Kartennetzentwurf (auch Kartenprojektion) innerhalb der Kartografie. Er sagt aus, dass der Abstand in ausgewählten Richtungen bei der Projektion auf einen Hilfskörper (bis auf einen festen, für alle abgebildeten Gebiete der Kugel gültigen Maßstabsfaktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} ) erhalten bleibt. Eine generell längentreue Abbildung einer Kugel auf eine Ebene ist unmöglich.
Literatur
- Hans Schupp: Elementargeometrie. UTB, Stuttgart 1977. ISBN 3-506-99189-2
Einzelnachweise
- ↑ Längentreue Abbildung. In: Guido Walz (Hrsg.): Lexikon der Mathematik. 1. Auflage. Spektrum Akademischer Verlag, Mannheim/Heidelberg 2000, ISBN 3-8274-0439-8.