Lewis-Zahl

aus Wikipedia, der freien Enzyklopädie
Physikalische Kennzahl
Name Lewis-Zahl
Formelzeichen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{Le}}
Dimension dimensionslos
Definition
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} Temperaturleitfähigkeit
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D} Diffusionskoeffizient
Benannt nach Warren Lewis
Anwendungsbereich thermische Diffusion

Die Lewis-Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{Le}} (nach Warren Lewis[1][2]) ist eine dimensionslose Kennzahl der Physik.

Bei der Wärme- und Stoffübertragung stellt sie das Verhältnis von Wärmeleitung zu Diffusion dar, ausgedrückt als Quotient aus Temperaturleitfähigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} und Diffusionskoeffizient Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D:} [3]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{Le} = \frac{a}{D} = \frac{\lambda}{D \cdot c_\mathrm{p} \cdot \rho}}

Die Lewis-Zahl setzt die Dicke der thermischen Grenzschicht ins Verhältnis zur Konzentrationsgrenzschicht[4]. Gemäß obiger Gleichung lässt sich die Temperaturleitfähigkeit aus der Wärmeleitfähigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda} , der isobaren spezifischen Wärmekapazität und der Dichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho} des Fluids berechnen.

Durch Erweitern mit der dynamischen Viskosität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta} lässt sich die Lewis-Zahl auch als Quotient von Schmidt-Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{Sc}} und Prandtl-Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{Pr}} darstellen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{Le} = \frac{\mathit{Sc}}{\mathit{Pr}} = \frac{\eta}{\rho \cdot D} \cdot \frac{\lambda}{\eta \cdot c_\mathrm{p}}}

Einzelnachweise

  1. W. K. Lewis: The Evaporation of a Liquid Into a Gas In: Transactions of the American Society of Mechanical Engineers, Nr. 1849, 1922, S. 325–340.
  2. A. Klinkenberg, H. H. Mooy: Dimensionless Groups in Fluid Friction, Heat, and Material Transfer In: Chemical Engineering Progress, Band 44, Nr. 1, 1948, S. 17–36.
  3. Josef Kunes: Dimensionless Physical Quantities in Science and Engineering. Elsevier, 2012, ISBN 0-12-391458-2, S. 254 (eingeschränkte Vorschau in der Google-Buchsuche).
  4. tec-science: Lewis-Zahl. In: tec-science. 9. Mai 2020, abgerufen am 25. Juni 2020 (deutsch).