Konjunktion (Logik)
Als Konjunktion (lateinisch coniungere ‚verbinden‘; allgemeinsprachlich: Und-Verknüpfung) wird in der Logik eine bestimmte Verknüpfung zweier Aussagen oder Aussagefunktionen bezeichnet. Gelesen wird die Konjunktion zweier Aussagen A sowie B meist als „A und B“. In der klassischen Logik ist die Verknüpfung zweier Aussagen "A und B" genau dann wahr, wenn beide Aussagenbestandteile, "A" und "B", jeweils wahr sind.
Gemeint sein kann mit dem Wort Konjunktion
- die verknüpfte Aussage als Ganzes (der Satz „A und B“)
- das Verknüpfungszeichen (Junktor) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\land}}
- das Verknüpfungswort „und“
- im Fall einer wahrheitsfunktionalen Konjunktion die Wahrheitsfunktion „et“, mit der sich der Wahrheitswert der verknüpften Aussage „A und B“ aus den Wahrheitswerten ihrer Teilsätze (A, B) bestimmen lässt
Die Konjunktion in der klassischen, zweiwertigen Logik
In der klassischen Logik ist die Konjunktion zweier Aussagen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} genau dann wahr, wenn sowohl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} als auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} wahr sind, und genau dann falsch, wenn mindestens eine der beiden Aussagen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} , falsch ist. Dieser Zusammenhang wird anschaulich in der Wahrheitstabelle der entsprechenden Wahrheitswertefunktion, der et-Funktion, dargestellt:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \land B} | |
wahr | wahr | wahr |
wahr | falsch | falsch |
falsch | wahr | falsch |
falsch | falsch | falsch |
Gebräuchliche Schreibweisen für die Konjunktion sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {A \land B}} , „A & B“, „A ▪ B“, „Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \cap B} “ (Peano) und „“. In der polnischen Notation wird die Konjunktion als „Kab“ geschrieben.
Eine Konjunktion selbst ist ein Boolescher Ausdruck. In der Digitaltechnik werden konjunktiv verknüpfte Variablen auch Produktterm genannt.
Für die Konjunktion gelten unter anderem folgende wichtige Gesetze:
- Idempotenz:
- Assoziativgesetz: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\land(B\land C) = (A\land B)\land C}
- Kommutativgesetz: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\land B=B\land A}
- De Morgansche Regeln:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \neg {(A \land B)} = \neg{A} \lor \neg{B}}
In Kalkülen des natürlichen Schließens werden als Schlussregeln für die Konjunktion die Konjunktionseinführung und die Konjunktionsbeseitigung verwendet. Mit der Konjunktionseinführung lässt sich aus zwei Aussagen A, B auf deren Konjunktion schließen; mit der Konjunktionsbeseitigung lässt sich aus der Konjunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {A \land B}} auf jedes der Konjunkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} beziehungsweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} schließen.
Die Konjunktion in mehrwertigen Logiken
Beim Aufstellen einer mehrwertigen Konjunktion bemüht man sich im Allgemeinen, möglichst viele Eigenschaften der klassischen Konjunktion beizubehalten, insbesondere die Assoziativität und Kommutativität. Damit kann eine mehrwertige Konjunktion axiomatisch folgendermaßen definiert werden:
ist eine Konjunktion, wenn gilt:
- Kommutativität:
- Assoziativität: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T(A,T(B,C)) = T(T(A,B),C)}
- Monotonie: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A > B \Rightarrow T(A,C) \ge T(B,C)}
- Einselement:
Weitere sinnvolle, aber nicht notwendige Eigenschaften sind Stetigkeit und Idempotenz.
In dreiwertigen Logiken wurden beispielsweise folgende Konjunktionen aufgestellt:
Konjunktion
in der dreiwertigen Logik Ł3
von Jan Łukasiewicz (1920)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} | ||
---|---|---|
1 | 1 | 1 |
1 | 0,5 | 0,5 |
1 | 0 | 0 |
0,5 | 1 | 0,5 |
0,5 | 0,5 | 0,5 |
0,5 | 0 | 0 |
0 | 1 | 0 |
0 | 0,5 | 0 |
0 | 0 | 0 |
Konjunktion
in der dreiwertigen Logik B3
von Dimitri Anatoljewitsch Bočvar (1938)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} | ||
---|---|---|
1 | 1 | 1 |
1 | 0,5 | 0,5 |
1 | 0 | 0 |
0,5 | 1 | 0,5 |
0,5 | 0,5 | 0,5 |
0,5 | 0 | 0,5 |
0 | 1 | 0 |
0 | 0,5 | 0,5 |
0 | 0 | 0 |
Die logische Konjunktion und das Wort „und“
Das natürlichsprachliche Wort „und“ ist nicht mit der Konjunktion im Sinn der Logik identisch. Einerseits wird das Wort „und“ nicht immer im Sinn der logischen Konjunktion verwendet. Beispiele:
- „und dann“
„Ich aß und ging (dann) nach Hause.“ Hier wird das Wort „und“ verwendet, um ein zeitliches Nacheinander auszudrücken. - „und deshalb“
„Der Patient nahm das Medikament und wurde (deshalb) gesund.“ Hier wird eine kausale Beziehung zum Ausdruck gebracht.
Andererseits kann die Konjunktion auch durch andere sprachliche Mittel ausgedrückt werden. Beispiel:
- „aber“
- „Es ist Frühling und es regnet.“
- „Es ist Frühling, aber es regnet.“
- Diese beiden Sätze sind aussagenlogisch gleichwertig.