K-monotone Funktion
Eine K-monotone Funktion ist eine Verallgemeinerung einer reellen monotonen Funktion auf Funktionen, die vom nach abbilden. Dabei wird die Ordnung auf den reellen Zahlen mittels eines echten Kegels zu einer Halbordnung auf verallgemeinert. K-monotone Funktionen lassen sich als Spezialfall einer monotonen Abbildung auffassen.
Definition
Gegeben sei eine Funktion mit und ein echter Kegel im sowie die von ihm definierte verallgemeinerte Ungleichung und die strikte verallgemeinerte Ungleichung Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \prec _{K}} . Dann heißt die Funktion
- K-monoton wachsend oder K-monoton steigend, wenn für alle mit gilt, dass ist.
- K-monoton fallend, wenn für alle mit gilt, dass Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f(x)\geq f(y)} ist.
- strikt K-monoton wachsend oder strikt K-monoton steigend, wenn für alle mit gilt, dass Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f(x)<f(y)} ist.
- strikt K-monoton fallend, wenn für alle mit gilt, dass ist.
- strikt K-monoton, wenn sie entweder strikt K-monoton wachsend (strikt K-monoton steigend) oder strikt K-monoton fallend ist.
- K-monoton, wenn sie entweder K-monoton wachsend (K-monoton steigend) oder K-monoton fallend ist.
Beispiele
- Jede monoton wachsende Funktion ist K-monoton wachsend bezüglich des Kegels .
- Jede monoton fallende Funktion ist K-monoton wachsend bezüglich des Kegels . Die Angabe des Kegels ist also essentiell, um Verwechslungen vorzubeugen.
- Sind die Funktionen monoton wachsend, so ist die Funktion
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f(x)=f_{1}(x_{1})+\dots +f_{n}(x_{n})}
- K-monoton wachsend bezüglich des positiven Orthanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^n } . Dies folgt direkt aus der Monotonie der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_i } .
Eigenschaften
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h: \R^n \supset D \to R } differenzierbar und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D } eine konvexe Menge sowie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K^D } der duale Kegel des Kegels Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K } . Dann gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h } ist K-monoton wachsend auf genau dann, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla h(x) \succcurlyeq_{K^D} 0} für alle .
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h } ist K-monoton fallend auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D } genau dann, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla h(x) \preccurlyeq_{K^D} 0} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in D } .
- Wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla h(x) \succ_{K^D} 0} für alle gilt, dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h } strikt K-monoton wachsend auf .
- Wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla h(x) \prec_{K^D} 0} für alle gilt, dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h } strikt K-monoton fallend auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D } .
Matrix-monotone Funktionen
Wählt man als Vektorraum anstelle des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^n } den Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^n } (der Vektorraum aller reellen symmetrischen Matrizen), so nennt man die entsprechenden Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h \colon S^n \to \mathbb{R} } Matrix-monotone Funktionen. Als Kegel wählt man hier den Kegel der semidefiniten Matrizen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^n_{+} } , was äquivalent zur Verwendung der Loewner-Halbordnung ist. Die Benennung folgt dem obigen Schema. So ist die Determinante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \det \colon S^n \to \R } strikt Matrix-monoton wachsend auf dem Kegel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^n_{++} } der positiv definiten Matrizen.
Verwendung
K-monotone Funktionen finden Verwendung in der Theorie der konvexen Funktionen. So ist zum Beispiel die Verkettung einer K-monoton wachsenden konvexen Funktion und einer K-konvexen Funktion wieder konvex.
Literatur
Stephen Boyd, Lieven Vandenberghe: Convex Optimization. Cambridge University Press, Cambridge, New York, Melbourne 2004, ISBN 978-0-521-83378-3 (online).