Äußeres Maß

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Messbarkeit nach Carathéodory)

Äußeres Maß (englisch outer measure) ist ein Begriff aus dem mathematischen Teilgebiet der Maßtheorie, der 1914 von Constantin Carathéodory eingeführt wurde. Äußere Maße spielen eine wichtige Rolle bei der Erweiterung von Prämaßen zu Maßen mittels des Maßerweiterungssatz von Carathéodory. Äußere Maße sind im Allgemeinen aber keine Maße.

Definition

Ein äußeres Maß ist eine Mengenfunktion von der Potenzmenge einer Menge in das Intervall , welche folgende Axiome erfüllt:

  •     „Monotonie
  •     „-Subadditivität

Der Name äußeres Maß lehnt sich an die Begriffe inneres und äußeres Maß an, die von Borel und Lebesgue benutzt wurden. Die Theorie von Carathéodory benutzt kein inneres Maß und vereinfacht die grundlegenden Beweise beträchtlich.

Metrisches äußeres Maß

Ein metrisches äußeres Maß ist ein äußeres Maß auf einem metrischen Raum mit der zusätzlichen Eigenschaft:

für alle nichtleeren separierten Mengen und , d. h. . Bei der Konstruktion des Lebesgue-Maßes wird beispielsweise ein metrisches äußeres Maß verwendet.

Konstruktion

Äußere Maße

Sei beliebiges Mengensystem mit und eine Mengenfunktion mit . Setzt man für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\subseteq X} :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu(A):=\begin{cases} \inf\ \left\{ \left.\sum_{i=1}^\infty\mu(A_i) \,\right|\, A_i\in S,\ A\subseteq \bigcup_{i=1}^\infty A_i \right\} \\ +\infty, \text{ wenn } A \text{ in keiner abz}\mathrm{\ddot{a}}\text{hlbaren Vereinigung von Mengen aus }S\text{ enthalten ist}. \end{cases}}

Dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} ein äußeres Maß auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal P (X)} . Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu } Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma} -subadditiv, so gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(A)=\nu(A) } für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \in S } . Somit lässt sich insbesondere mittels eines Inhalts oder eines Prämaßes auf einem Halbring oder Ring ein äußeres Maß konstruieren. Manchmal wird daher die obige Konstruktion nur für diese Spezialfälle definiert.

Wählt man als Prämaß das Lebesguesche Prämaß, so erhält man das äußere Lebesguesche Maß, wählt man als Prämaß das Lebesgue-Stieltjessche Prämaß, so erhält man das äußere Lebesgue-Stieltjessche Maß.

Metrische äußere Maße

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S \subseteq\mathcal P (X)} beliebiges Mengensystem auf dem metrischen Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,d) } mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \emptyset \in S} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu\colon S\rightarrow [0,+\infty]} eine Mengenfunktion mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(\emptyset)=0} . Definiert man

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_\delta(A):=\begin{cases} \inf\ \left\{ \left.\sum_{i=1}^\infty\mu(A_i) \,\right|\, \operatorname{diam}(A_i)\le \delta, \, A_i\in S,\ A\subseteq \bigcup_{i=1}^\infty A_i \right\} \\ +\infty, \text{ wenn } A \text{ in keiner abzählbaren Vereinigung von Mengen aus }S\text{ mit Durchmesser }\le \delta\text{ enthalten ist}, \end{cases}}

so ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu(A):= \sup_{\delta>0}\nu_\delta(A) }

ein metrisches äußeres Maß. Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{diam}(A) } der Durchmesser der Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A } .

Auf diese Weise wird zum Beispiel das äußere Hausdorff-Maß definiert, aber auch das äußere Lebesguesche Maß kann so gewonnen werden. Dazu setzt man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d(x,y)=|x-y| } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(A)=\operatorname{diam}(A) } und als Mengensystem den Halbring der halboffenen Intervalle.

Messbarkeit nach Carathéodory

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu\colon\mathcal{P}(X)\to [0,\infty]} ein äußeres Maß auf der Potenzmenge einer Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} . Eine Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\subseteq X} heißt messbar bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} oder kurz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} -messbar, falls

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall E \in \mathcal{P}(X): \nu(E) = \nu(E \cap A) + \nu(E \cap A^c)} .

Dieser Begriff der Messbarkeit stammt von Constantin Carathéodory.[1] Äquivalent ist die Definition, dass eine Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\subseteq X} genau dann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} -messbar ist, wenn

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \quad \nu(E)\geq \nu(E\cap A)+\nu(E\cap A^c)} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E\subseteq X} gilt.

Die beiden Charakterisierungen sind äquivalent, da das Gleichheitszeichen aus der σ-Subadditivität des äußeren Maßes folgt.

Beispiele

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \emptyset, X} sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} -messbar.
  • Komplemente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} -messbarer Mengen sind messbar: Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\subseteq X} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} -messbar. Dann ist auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A^c} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} -messbar.
  • Nullmengen bezüglich des äußeren Maßes sind messbar: Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\subseteq X} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu(A)=0} . Dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} -messbar. Genauso ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} -messbar, falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu(A^c) = 0} gilt.

Abgrenzung zu anderen Messbarkeitsbegriffen

Meist wird mit der Messbarkeit einer Menge gemeint, dass sich diese Menge in einer bestimmten σ-Algebra befindet. Dieser Messbarkeitsbegriff ist hauptsächlich davon abhängig, in welchem Messraum man sich befindet. Daher spricht man auch teilweise von der Messbarkeit bezüglich eines Messraumes.

Im Gegensatz dazu ist der hier verwendete Messbarkeitsbegriff unabhängig von einem Mengensystem. Er hängt nur von dem äußeren Maß ab, das auf der gesamten Potenzmenge definiert ist. Dementsprechend nennt man die Messbarkeit nach Carathéodory auch Messbarkeit bezüglich eines äußeren Maßes.

σ-Algebra der ν-messbaren Mengen

Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} ein äußeres Maß, so ist die Menge

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_{\nu} = \{ A \subset X | A \text{ ist } \nu\text{-messbar} \}}

eine σ-Algebra und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu|_ {\mathcal A_{\nu}}} ein vollständiges Maß.

Es lässt sich auch zeigen, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_{\nu} } genau dann die Borelsche σ-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{B}(X) } enthält, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu } ein metrisches äußeres Maß auf dem metrischen Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,d) } ist.

Siehe auch

Literatur

  • Heinz Bauer: Maß- und Integrationstheorie. 2., überarbeitete Auflage. de Gruyter, Berlin u. a. 1992, ISBN 3-11-013626-0, § 5.
  • Constantin Carathéodory: Vorlesungen über reelle Funktionen. B. G. Teubner Verlag, Leipzig und Berlin 1918.
  • Jürgen Elstrodt: Maß- und Integrationstheorie. 4., korrigierte Auflage. Springer, Berlin u. a. 2005, ISBN 3-540-21390-2, Kapitel II § 4.1.
  • Boris Makarov, Anatolii Podkorytov: Real Analysis: Measures, Integrals and Applications (= Universitext). Springer, London, Heidelberg, New York, Dordrecht 2013, ISBN 978-1-4471-5121-0, doi:10.1007/978-1-4471-5122-7.

Einzelnachweise

  1. Constantin Carathéodory: Vorlesungen über reelle Funktionen. Leipzig und Berlin 1918, S. 246