σ-Algebra
Eine σ-Algebra (gesprochen: „Sigma-Algebra“), auch σ-Mengenalgebra, abgeschlossenes Mengensystem, Sigmakörper oder Borelscher Mengenkörper genannt, ist ein Mengensystem in der Maßtheorie, also eine Menge von Mengen. Eine σ-Algebra zeichnet sich durch die Abgeschlossenheit bezüglich gewisser mengentheoretischer Operationen aus. σ-Algebren spielen eine zentrale Rolle in der modernen Stochastik und Integrationstheorie, da sie dort als Definitionsbereiche für Maße auftreten und alle Mengen enthalten, denen man ein abstraktes Volumen beziehungsweise eine Wahrscheinlichkeit zuordnet.
σ-Algebren finden in vielen Teilbereichen der Mathematik Anwendung. So ermöglichen sie beispielsweise, die zeitliche Verfügbarkeit von Informationen durch Filtrierungen oder die Kompression von Daten durch die suffiziente σ-Algebra zu modellieren.
Definition
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega } eine nichtleere Menge und sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal P(\Omega) } die Potenzmenge dieser Menge.
Ein Mengensystem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A \subseteq \mathcal P(\Omega) } , also eine Menge von Teilmengen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega } , heißt σ-Algebra (auf oder über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega } ), wenn es die folgenden drei Bedingungen erfüllt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A } enthält die Grundmenge. Es gilt also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega \in \mathcal A.}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A } ist stabil bezüglich der Komplementbildung. Ist also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B \in \mathcal A } , so ist auch Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle B^{\mathsf {c}}=\Omega \setminus B} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A } enthalten.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A } ist stabil bezüglich abzählbarer Vereinigungen. Sind also Mengen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_1, A_2, A_3, \dots } in enthalten, so ist auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bigcup_{n \in \N} A_n } in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A } enthalten.
Motivation
Will man den intuitiven Volumenbegriff im Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^3 } oder anderen Räumen mathematisch präzisieren, so fordert man meist folgende Eigenschaften:
- Jede Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M \subseteq \R^3 } hat ein Volumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Vol}(M) \in [0,\infty] } .
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Vol} } soll verschiebungsinvariant sein, denn die Position einer Menge hat intuitiv keinen Einfluss auf ihr Volumen. Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M \subseteq \R^3 } und Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle a\in \mathbb {R} ^{3}} gilt also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Vol} (M+a)= \operatorname{Vol}(M) } . Ebenso soll das Volumen invariant unter Rotationen sein. Kongruente Mengen sollen also identische Volumina besitzen.
- Das Volumen ist normiert. So soll zum Beispiel der Einheitswürfel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [0,1]^3 } das Volumen 1 besitzen.
- Die Vereinigung von abzählbar vielen disjunkten Mengen besitzt als Volumen genau die Summe der Volumina der einzelnen Mengen. Diese Eigenschaft heißt σ-Additivität und ist wichtig zur späteren Betrachtung von Grenzwerten.
Bei dieser impliziten Definition eines Volumenbegriffes stellt sich die Frage, ob solch eine Funktion überhaupt existiert. Diese Frage wird das Maßproblem genannt. Nach dem Satz von Vitali ist das Maßproblem aber unlösbar, es existiert also keine Abbildung mit den geforderten Eigenschaften.
Nun versucht man, durch eine sinnvolle Abschwächung der obigen Forderungen einen Volumenbegriff zu definieren, der einerseits noch unserem intuitiven Begriff weitestgehend entspricht, andererseits aber auch mathematisch wohldefiniert ist und eine fruchtbare Theorie des Maßes liefert. Hierzu schwächt man die erste der obigen Forderungen ab und akzeptiert, dass man nicht allen Mengen ein Volumen zuordnen kann. Man beschränkt sich dann auf ein Mengensystem von Mengen, die ein Volumen besitzen, das folgenden praktischen Überlegungen entspricht:
- Die Grundmenge soll ein (nicht notwendigerweise endliches) Volumen besitzen und demnach im Mengensystem enthalten sein.
- Besitzt die Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M } ein Volumen, so will man auch das Volumen des Komplements wissen. Also soll zu jeder Menge auch ihr Komplement im Mengensystem sein.
- Die vierte Bedingung in der oberen Aufzählung impliziert, dass wenn abzählbar viele Mengen ein Volumen besitzen, dann auch die Vereinigung dieser Mengen wieder ein Volumen besitzt und somit im Mengensystem enthalten ist.
Direkte Folgerungen daraus sind, dass auch die leere Menge und abzählbare Schnitte von Mengen mit Volumen wieder ein Volumen besitzen.
Diese Forderungen sind genau die definierenden Eigenschaften einer σ-Algebra. Somit sind σ-Algebren die Mengensysteme, auf denen man sinnvollerweise Volumenbegriffe und Maße definiert, um Widersprüche wie die durch den Satz von Vitali zu vermeiden.
Eigenschaften
Stabilität gegenüber Mengenoperationen
Aus den Bedingungen 1 und 2 der Definition folgt direkt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A} immer das Komplement von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} , also die leere Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \emptyset } enthält.
Des Weiteren folgt aus den De Morganschen Gesetzen die Identität
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bigcap_{n\in\N} A_n = \biggl(\bigcup_{n\in\N} A_n^{\mathsf c}\biggr)^{\!\!\mathsf c}}
Daher folgt aus Punkt 2 und 3 der Definition auch, dass σ-Algebren auch abgeschlossen bezüglich abzählbaren Durchschnitten sind.
Aus der Stabilität bezüglich abzählbarer unendlicher Schnittmengen und Vereinigungen folgt auch direkt die Stabilität bezüglich endlich vielen Schnitten oder Vereinigungen. Im Falle der Vereinigung setzt man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_j= \emptyset } für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j > m } bei einem festgelegten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m } , dann ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_1\cup A_2\cup\dotsb\cup A_m = \bigcup_{i \in \N} A_i }
Bei Schnitten ist das Vorgehen analog, man setzt dann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_j = \Omega } für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j > m } .
Damit sind σ-Algebren auch abgeschlossen gegen Mengendifferenz, denn es gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\setminus B = A\cap B^{\mathsf c}} .
Mächtigkeit
Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{A}} eine endliche σ-Algebra, so gibt es immer eine positive ganze Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\mathcal{A}| = 2^n} , das heißt: Die Mächtigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\mathcal{A}|} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{A}} ist eine Zweier-Potenz.
Beispiele
Für jede beliebige Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_1:=\{\emptyset,\Omega\}}
die kleinstmögliche σ-Algebra. Sie wird auch die triviale σ-Algebra genannt. Die Potenzmenge
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_2:=\mathcal P(\Omega)}
ist die größte mögliche σ-Algebra mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} als Grundmenge.
Für jede beliebige Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} und eine Teilmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \subseteq \Omega} ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_3 = \{ \emptyset, A, A^{\mathsf c}, \Omega \}}
eine σ-Algebra. Sie ist die kleinste σ-Algebra, die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} enthält.
Über einer Grundmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} ist das Mengensystem
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_4 = \{A\subseteq \Omega\mid A\ \mathrm{abz\ddot{a}hlbar\ oder}\ A^{\mathsf c}\ \mathrm{abz\ddot{a}hlbar}\}}
eine σ-Algebra. Hierbei bedeutet abzählbar, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A } endlich oder abzählbar unendlich ist.
Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega'} zwei beliebige Mengen, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A'} eine σ-Algebra in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega'} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T\colon \Omega \rightarrow \Omega'} eine Abbildung. Dann ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_5:=T^{-1}(\mathcal A') = \lbrace T^{-1}(A'): A' \in \mathcal A' \rbrace }
eine σ-Algebra in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} . Dies folgt direkt aus der Stabilität des Urbildes bezüglich der Mengenoperationen. Sie ist ein einfaches Beispiel einer Initial-σ-Algebra, einem gängigen Verfahren zur Konstruktion von σ-Algebren.
Wichtigstes Beispiel in der Anwendung ist die borelsche σ-Algebra, die jedem topologischen Raum zugeordnet werden kann. Sie ist per Definition die kleinste σ-Algebra, die alle offenen Teilmengen enthält, kann aber nur sehr selten vollständig beschrieben werden.
Bedeutung
σ-Algebren bilden den Ausgangspunkt für die Definition des Maßraums und des Wahrscheinlichkeitsraums. Das Banach-Tarski-Paradoxon demonstriert, dass auf überabzählbaren Mengen die durch die Potenzmenge gebildete σ-Algebra als Grundlage für die Volumenbestimmung zu groß sein kann und die Betrachtung anderer σ-Algebren mathematisch notwendig ist. In der Theorie der stochastischen Prozesse, insbesondere in der stochastischen Finanzmathematik, wird die bis zu einem Zeitpunkt prinzipiell beobachtbare Information durch eine σ-Algebra beschrieben, was zum Begriff der Filtrierung, also einer zeitlich aufsteigenden Familie von σ-Algebren führt. Filtrierungen sind essentiell für die allgemeine Theorie der stochastischen Integration; Integranden (also finanzmathematische Handelsstrategien) dürfen zu einer Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} nur von den Informationen bis (ausschließlich) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} abhängen; insbesondere dürfen sie nicht „in die Zukunft schauen“.
Operationen
Schnitte von σ-Algebren
Schnitte von zwei σ-Algebren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_1 } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_2 } , also das Mengensystem
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_1 \cap \mathcal A_2 = \{ A \subseteq \Omega \; | \; A \in \mathcal A_1 \text{ und } A \in \mathcal A_2 \} } ,
sind stets wieder σ-Algebren. Denn ist exemplarisch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \in \mathcal A_1 \cap \mathcal A_2 } , so ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega \setminus A } in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_1 } , da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A } auch in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_1 } ist.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega \setminus A } in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_2 } , da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A } auch in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_2 } ist.
Somit ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega \setminus A } auch in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_1 \cap \mathcal A_2 } , der Schnitt ist also komplementstabil. Die Stabilität bezüglich der anderen Mengenoperationen folgt analog.
Die Aussage gilt ebenso für den Schnitt einer beliebigen Anzahl von σ-Algebren, da sich die obige Argumentation dann auf alle dieser σ-Algebra ausweiten lässt. Diese Eigenschaft bildet die Basis für den σ-Operator, vgl. unten.
Vereinigungen von σ-Algebren
Die Vereinigung zweier σ-Algebren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_1 } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_2 } , also das Mengensystem
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_1 \cup \mathcal A_2 = \{ A \subseteq \Omega \; | \; A \in \mathcal A_1 \text{ oder } A \in \mathcal A_2 \} }
ist im Allgemeinen keine σ-Algebra mehr. Betrachtet man beispielsweise die beiden σ-Algebren
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_1 = \{\emptyset, \{1,2,3\}, \{1\}, \{2,3\}\} }
sowie
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_2 = \{\emptyset, \{1,2,3\}, \{3\}, \{1,2\}\} } ,
so ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_1 \cup \mathcal A_2 = \{\emptyset, \{1,2,3\}, \{1,2\}, \{2,3\}, \{1\}, \{3\}\} } .
Dieses Mengensystem ist weder vereinigungsstabil, da es Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{1\} \cup \{3\} =\{1,3\} } nicht enthält, noch ist es schnittstabil, da es Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{2\}= \{1,2\} \cap \{2,3\} } nicht enthält.
Produkte von σ-Algebren
Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal M_1 } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal M_2 } Mengensysteme auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega_1 } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega_2 } und wird das Produkt von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal M_1 } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal M_2 } definiert als
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal M_1 \times \mathcal M_2 := \{ A \times B \subseteq \Omega_1 \times \Omega_2 \; | \; A \in \mathcal M_1, \; B \in \mathcal M_2\} } ,
so ist das Produkt von zwei σ-Algebren im Allgemeinen keine σ-Algebra mehr, sondern lediglich ein Halbring. Denn betrachtet man
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal B = \{ \emptyset, \{1\}, \{2\}, \{1,2\}\} } ,
so enthält das Mengensystem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal B \times \mathcal B } sowohl die Mengen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_1= \{1,2\} \times \{1,2\}= \{ (1,1),(1,2),(2,1),(2,2)\} } als auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_2= \{2\} \times \{2\}= \{(2,2)\} } .
Die Menge
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_1 \setminus M_2 = M_2^{\mathsf c}= \{ (1,1),(1,2),(2,1)\} }
ist jedoch nicht enthalten, da sie sich nicht als kartesisches Produkt zweier Elemente aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal B } darstellen lässt. Somit ist das Produkt nicht komplementstabil, kann folglich auch keine σ-Algebra sein.
Das Produkt von σ-Algebren wird daher nicht als das kartesische Produkt der einzelnen σ-Algebren definiert, sondern über die Produkt-σ-Algebra. Diese verwendet die Mengensysteme der kartesischen Produkte als Erzeuger einer σ-Algebra. Im Falle des Produktes von endlich vielen σ-Algebren bedeutet dies, dass die Produkt-σ-Algebra die kleinste σ-Algebra ist, die alle kartesischen Produkte von Elementen der einzelnen σ-Algebren enthält.
σ-Operator
Für eine beliebige Teilmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{M}} der Potenzmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal P(\Omega)} ist der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma} -Operator definiert als
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma(\mathcal{M}) = \bigcap_{ \mathcal A \in\mathcal F(\mathcal{M})}\!\!\mathcal A,}
wobei
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal F(\mathcal{M}) = \{\mathcal A \subseteq \mathcal P(\Omega) \mid \mathcal{M}\subseteq \mathcal A, \mathcal A\ \sigma\text{-Algebra}\}.}
Da die Schnittmenge einer Familie von σ-Algebren (über derselben Grundmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} ) wieder eine σ-Algebra ist, ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma(\mathcal{M})} somit die kleinste σ-Algebra, die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{M}} umfasst.
Der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma} -Operator erfüllt die fundamentalen Eigenschaften eines Hüllenoperators:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{M} \subseteq \sigma(\mathcal{M})} , also ist der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma} -Operator extensiv.
- Gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{M}\subseteq \mathcal{N}} , so ist auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma(\mathcal{M})\subseteq \sigma(\mathcal{N})} (Monotonie bzw. Isotonie).
- Es ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma(\sigma(\mathcal{M})) = \sigma(\mathcal{M})} (Idempotenz).
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma(\mathcal{M})} wird als die von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{M}} erzeugte σ-Algebra bezeichnet, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{M}} heißt Erzeuger dieser σ-Algebra. Die Benennung als erzeugte σ-Algebra ist jedoch nicht eindeutig, da auch die Initial-σ-Algebra als die (von den Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_i } ) erzeugte σ-Algebra bezeichnet wird.
In vielen Fällen lassen sich die Elemente von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma(\mathcal{M})} nicht explizit angeben (siehe z. B. Borel-Hierarchie). Eine häufig angewendete Beweismethode für Aussagen, die für alle Elemente von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma(\mathcal{M})} gelten, ist das Prinzip der guten Mengen. Der Dynkinsche π-λ-Satz trifft Aussagen darüber, wann eine erzeugte σ-Algebra und ein erzeugtes Dynkin-System übereinstimmen.
Spezielle σ-Algebren
Spur-σ-Algebren
Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E \subseteq \Omega} wird das Mengensystem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A|_E = \{ A \cap E \,|\, A \in \mathcal A \}} als Spur von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} bzw. Spur-σ-Algebra von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A} über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} bezeichnet. Man kann zeigen, dass die Spur von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} wieder eine σ-Algebra (aber mit der Grundmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} ) ist, was den Namen „Spur-σ-Algebra“ rechtfertigt. Analog lässt sich die Spur-σ-Algebra auch als Initial-σ-Algebra bezüglich der natürlichen Einbettung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i\colon E \rightarrow \Omega, \, i(e)=e } auffassen. Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{E} } ein Erzeuger von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{A} } , so gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{A}|_E=\sigma(\mathcal{E}|_E) } . Die Spur des Erzeugers erzeugt also die Spur-σ-Algebra.
Unter-σ-Algebren
Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A } eine σ-Algebra und gilt für ein Mengensystem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal M } , dass sowohl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal M \subseteq \mathcal A } ist als auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal M } eine σ-Algebra ist, so heißt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal M } eine Unter-σ-Algebra, Teil-σ-Algebra oder Sub-σ-Algebra von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A } .[1]
Borelsche σ-Algebra
Die Borelsche σ-Algebra ist die in der Anwendung wichtigste σ-Algebra. Dies beruht auf der Tatsache, dass sie auf natürliche Weise mit dem entsprechenden zugrundeliegenden topologischen Raum verträglich ist und viele wichtige Mengen wie die offenen und die abgeschlossenen Mengen enthält. Des Weiteren lassen sich große Klassen von messbaren Funktionen für die Borelsche σ-Algebra angeben. Insbesondere sind alle stetigen Funktionen immer messbar bezüglich der Borelschen σ-Algebra.
Initial-σ-Algebren und Final-σ-Algebra
Die Initial-σ-Algebra ist eine σ-Algebra, die mittels Abbildungen auf einer Grundmenge definiert wird, auf der per se keine σ-Algebra existiert. Sie ist dann sogar die kleinste σ-Algebra, bezüglich derer die in der Konstruktion verwendeten Funktionen messbar sind. Das Gegenstück ist die Final-σ-Algebra, sie ist die größte σ-Algebra, so dass eine vorgegebene Menge an Funktionen messbar ist. Diese Konstruktion bildet somit ein Analogon zur Initialtopologie und zur Finaltopologie in der Topologie. Produkt-σ-Algebren und Spur-σ-Algebren lassen sich beide als Spezialfall von Initial-σ-Algebren auffassen.
Produkt-σ-Algebren
Produkt-σ-Algebren spielen dann eine Rolle, wenn Maße auf dem Produkt zweier Messräume definiert werden sollen. Da das Produkt von zwei σ-Algebren im Allgemeinen keine σ-Algebra ist, interessiert man sich für eine Erweiterung der Produkte der σ-Algebren auf den Produktraum. Diese Erweiterung ist dann die Produkt-σ-Algebra. Sie spielt eine wichtige Rolle bei der Definition von Produktmaßen, diese wiederum sind die Grundlage für den Satz von Fubini, die Modellierung mehrstufiger Experimente in der Stochastik und dienen als theoretische Grundlage der stochastischen Prozesse.
Separable σ-Algebren
Eine σ-Algebra, die einen abzählbaren Erzeuger besitzt, nennt man separabel. Beispiel hierfür wäre die Borelsche σ-Algebra auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{R}^n } , die sie sich von Quadern mit rationalen Eckpunkten erzeugen lässt.
σ-Algebren in Teilgebieten der Mathematik
Innerhalb der Teilgebiete der Mathematik existiert noch eine Vielfalt von σ-Algebren. Die unten stehende Aufzählung dient dem groben Überblick.
Wahrscheinlichkeitstheorie
In der Wahrscheinlichkeitstheorie werden σ-Algebren teils Ereignissysteme genannt, da sie der stochastischen Nomenklatur entsprechend Ereignisse enthalten.
Weitere wichtige σ-Algebra in der Wahrscheinlichkeitstheorie ist die bei der Untersuchung von Grenzwerten auftretende Terminale σ-Algebra. Für eine Folge von σ-Algebren sagt sie aus, welche Mengen von allen endlichen Anfangsstücken der Folge unabhängig sind.
Theorie stochastischer Prozesse
Wichtigste Verwendung von σ-Algebren in der Theorie stochastischer Prozesse sind die Filtrierungen. Dabei handelt es sich um ineinander geschachtelte Familien von σ-Algebren, die modellieren, wie viel Information einem Stochastischen Prozess zu einem bestimmten Zeitpunkt zur Verfügung steht. So sorgen sie bei der Modellierung von Glücksspielen dafür, dass die teilnehmenden Spieler über keine Information des kommenden Spieles verfügen.
Weitere wichtige σ-Algebren sind die vorhersagbare σ-Algebra zur Formulierung von vorhersagbaren Prozessen in stetiger Zeit und die σ-Algebra der τ-Vergangenheit, die durch Kombination mit einer Stoppzeit entsteht.
Des Weiteren gibt es noch die austauschbare σ-Algebra, die nur Mengen enthält, die in dem Sinne austauschbar sind, als dass sie invariant gegen Permutationen endlich vieler Folgeglieder des stochastischen Prozesses sind.
Ergodentheorie
In der Ergodentheorie wichtige σ-Algebren sind die σ-Algebra der invarianten Ereignisse und P-triviale σ-Algebren. P-triviale σ-Algebren sind solche, die nur Mengen mit Wahrscheinlichkeit 0 oder 1 enthalten. Beide σ-Algebren werden zum Beispiel zur Definition von ergodischen Transformationen oder verwandten Grundbegriffen der Ergodentheorie genutzt.
Mathematische Statistik
In der mathematischen Statistik kommen mehrere verschiedene σ-Algebren vor. Eine von ihnen ist die suffiziente σ-Algebra. Sie enthält alle Mengen, die bezüglich einer gegebenen Verteilungsklasse Informationen enthalten. Somit können alle Mengen, die nicht in der σ-Algebra enthalten sind weggelassen werden, ohne dass ein Informationsverlust eintritt. Eine Verschärfung ist die minimalsuffiziente σ-Algebra, sie ist die (bis auf Nullmengen) kleinste suffiziente σ-Algebra. Außerdem existiert noch die verwandte stark suffiziente σ-Algebra, die unter Umständen mit der suffizienten σ-Algebra übereinstimmt. Gegenstück zur suffizienten σ-Algebra ist die verteilungsfreie σ-Algebra, sie trägt keine Informationen, ist also maximal uninformativ. Des Weiteren existiert beispielsweise noch die vollständige σ-Algebra.
Verwandte Mengensysteme
Dynkin-Systeme
Jede σ-Algebra ist immer auch ein Dynkin-System. Umgekehrt ist jedes durchschnittsstabile Dynkinsystem auch eine σ-Algebra. Ein Beispiel[2] für ein Dynkin-System, das keine σ-Algebra ist, ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal M = \{\emptyset, \{1,2\},\{3,4\},\{1,4\},\{2,3\},\{1,2,3,4\}\} }
auf der Grundmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega= \{1,2,3,4\} } . Das Mengensystem ist ein Dynkin-System, aber keine Algebra (da nicht durchschnittsstabil) und damit auch keine σ-Algebra.
Es gilt außerdem der Dynkinsche π-λ-Satz: Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal E } ein durchschnittsstabiles Mengensystem, so stimmen die von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal E } erzeugte σ-Algebra und das von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal E } erzeugte Dynkin-System überein.
Algebren
Jede σ-Algebra ist immer eine Mengenalgebra. Umgekehrt ist nicht jede Mengenalgebra eine σ-Algebra. Beispiel hierfür wäre
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A = \{ A \subseteq \Omega \mid |A| \text{ oder } |A^C| \text{ ist endlich } \} }
bei unendlicher Grundmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega } .
σ-Ringe
Jede σ-Algebra ist per Definition ein σ-Ring, welcher die Grundmenge enthält. Nicht jeder σ-Ring ist eine σ-Algebra.
Literatur
- Heinz Bauer: Maß- und Integrationstheorie. 2., überarbeitete Auflage. de Gruyter, Berlin u. a. 1992, ISBN 3-11-013626-0.
- Jürgen Elstrodt: Maß- und Integrationstheorie. Springer, Berlin u. a. 1996, ISBN 3-540-15307-1.
- Ernst Henze: Einführung in die Maßtheorie. 2., überarbeitete Auflage. Bibliographisches Institut, Mannheim u. a. 1985, ISBN 3-411-03102-6.
Einzelnachweise
- ↑ Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. Eine Einführung. 2., überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-45386-1, S. 92, doi:10.1007/978-3-642-45387-8.
- ↑ Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6, S. 4, doi:10.1007/978-3-642-36018-3.