σ-Ring

aus Wikipedia, der freien Enzyklopädie

Ein σ-Ring oder auch σ-Mengenring ist ein spezielles Mengensystem, das eine wichtige Rolle in der Maßtheorie spielt. Ein σ-Ring ist ein σ-vereinigungsstabiles Mengensystem, das zusätzlich abgeschlossen bezüglich Differenzbildung ist.

Definition

Sei eine beliebige Menge. Ein Mengensystem auf , also eine Menge von Teilmengen von , heißt σ-Ring (über ), wenn folgende Eigenschaften erfüllt sind:

  1. : Der σ-Ring enthält die leere Menge.
  2. (Stabilität/Abgeschlossenheit bezüglich abzählbaren Vereinigungen).
  3. (Stabilität/Abgeschlossenheit bezüglich Differenz).

Beispiele

  • Einfaches Beispiel für einen σ-Ring ist , sie ist der kleinst mögliche σ-Ring.
  • Ein weiteres Beispiel ist die Potenzmenge , sie ist der größt mögliche σ-Ring über einer gegebenen Menge .
  • Ist nun ein beliebiges Mengensystem über der Menge , so ist
der von erzeugte σ-Ring. Er ist der kleinste σ-Ring über , der enthält.
  • Das System aller abzählbaren Teilmengen einer Grundmenge , also das Mengensystem
,
ist ein σ-Ring über . Bei überabzählbarer Grundmenge ist dieses System keine σ-Algebra.

Eigenschaften

In einem σ-Ring sind abzählbare Durchschnitte wieder im σ-Ring enthalten, denn es gilt

für jede Folge im σ-Ring.

Damit sind auch endliche Schnitte und Vereinigungen im σ-Ring enthalten. Ebenso ist für jede Mengenfolge im σ-Ring auch wieder Limes superior und Limes inferior der Mengenfolge wieder in :

und .

Des Weiteren lässt sich jede abzählbare Vereinigung von beliebigen Mengen aus als abzählbare Vereinigung von disjunkten Mengen aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R} schreiben. Dies ist insbesondere für die Untersuchung von Mengenfunktionen auf σ-Additivität wichtig.

Operationen

Durchschnitte von σ-Ringen

Der Durchschnitt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R_1 \cap \mathcal R_2} zweier σ-Ringe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R_2} über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} ist stets wieder ein σ-Ring. Denn sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A, B \in \mathcal R_1 \cap \mathcal R_2} , so ist

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\setminus B \in \mathcal R_1} , da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A, B \in \mathcal R_1} , sowie
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\setminus B \in \mathcal R_2} , da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A, B \in \mathcal R_2} .

Somit ist auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \setminus B \in \mathcal R_1 \cap \mathcal R_2} , der Durchschnitt der σ-Ringe ist also differenzstabil. Die Stabilität bezüglich der abzählbaren Vereinigungen folgt analog.

Die Aussage gilt ebenso für den Schnitt einer beliebigen Anzahl von σ-Ringen über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} , da sich die obige Argumentation dann auf alle dieser σ-Ringe ausweiten lässt. Somit gilt: Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I} eine beliebige Indexmenge und sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R_i} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i\in I} σ-Ringe über derselben Grundmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} , so ist der Schnitt aller dieser σ-Ringe wieder ein σ-Ring Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R_I} über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R_I := \bigcap_{i\in I}\mathcal R_i} .

Vereinigungen von σ-Ringen

Die Vereinigung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R_1 \cup \mathcal R_2} zweier σ-Ringe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R_1 } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R_2 } über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} ist im Allgemeinen kein σ-Ring mehr. Betrachtet man beispielsweise die beiden σ-Ringe

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R_1 = \{\emptyset, \{1\}, \{2,3\}, \{1,2,3\}\}}

sowie

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R_2 = \{\emptyset, \{2\}, \{1,3\}, \{1,2,3\}\}}

über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega = \{1, 2, 3\}} , so ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R_1 \cup \mathcal R_2 = \{\emptyset, \{1\}, \{2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}} .

Dieses Mengensystem ist aber nicht vereinigungsstabil, da es Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{1\} \cup \{2\} = \{1,2\}} nicht enthält, und somit auch kein σ-Ring.

Produkte von σ-Ringen

Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R_2} σ-Ringe über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega_1} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega_2} , so ist das Produkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R_1 \times \mathcal R_2} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R_2} im Allgemeinen kein σ-Ring (über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega_1 \times \Omega_2} ) mehr. Denn betrachtet man den σ-Ring

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}} ,

über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega = \{1,2\}} , so enthält das Mengensystem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R \times \mathcal R} sowohl die Mengen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A = \{1,2\} \times \{1,2\} = \{(1,1), (1,2), (2,1), (2,2)\}} als auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B = \{2\} \times \{2\}= \{(2,2)\}} .

Die Menge

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \setminus B = \{(1,1), (1,2), (2,1)\}}

ist jedoch nicht in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R \times \mathcal R} enthalten, da sie sich nicht als kartesisches Produkt zweier Mengen aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R} darstellen lässt. Das Produkt ist somit nicht differenzstabil und damit auch kein σ-Ring.

Spur eines σ-Ringes

Die Spur eines σ-Ringes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R} bezüglich einer Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} , also das Mengensystem

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal R|_U := \{A \cap U \mid A \in \mathcal R\}}

ist immer ein σ-Ring, unabhängig von der Wahl von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} .

Beziehung zu verwandten Strukturen

Hierarchie der in der Maßtheorie verwendeten Mengensysteme

σ-Algebren

Ein σ-Ring, der die Grundmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} enthält, ist eine σ-Algebra (und damit auch eine Algebra). Somit ist jede σ-Algebra ein σ-Ring, die Umkehrung ist aber im Allgemeinen falsch. Beispiel für einen σ-Ring, der keine σ-Algebra ist, ist der im obigen Abschnitt Beispiele zuletzt genannte σ-Ring.

Ringe

Jeder σ-Ring ist ein Ring und damit auch ein Halbring und ein Mengenverband. Die Umkehrungen gelten im Allgemeinen nicht. Beispiel eines Ringes, der kein σ-Ring ist, wäre das Mengensystem aller endlichen Teilmengen bei einer abzählbar unendlichen Grundmenge.

δ-Ringe

Jeder σ-Ring ist auch immer ein δ-Ring, denn wie im Abschnitt Eigenschaften gezeigt wurde, sind σ-Ringe immer auch stabil bezüglich abzählbaren Schnitten. Umgekehrt sind δ-Ringe jedoch im Allgemeinen keine σ-Ringe. Betrachtet man zum Beispiel eine beliebige abzählbare Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} und definiert darauf das Mengensystem aller endlichen Mengen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal E := \{E \subseteq \Omega \mid |E| < \infty\}} ,

so handelt es sich um einen δ-Ring, da abzählbare Schnitte endlicher Mengen wieder endlich sind. Es ist aber kein σ-Ring, denn abzählbare Vereinigungen von endlichen Mengen sind im Allgemeinen nicht endlich.

Monotone Klassen

Jeder Ring, der eine monotone Klasse ist, ist ein σ-Ring. Denn sind die Mengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_1, A_2, A_3, ...} im Ring enthalten, so ist auch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_n := \bigcup_{i=1}^n A_i }

aufgrund der Eigenschaften des Ringes wieder im Mengensystem enthalten. Die Mengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_n} bilden aber eine monoton wachsende Mengenfolge, daher ist ihr Grenzwert

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty}B_n = \bigcup_{n=1}^\infty A_n}

aufgrund der Eigenschaften der monotonen Klasse auch im Mengensystem enthalten. Das Mengensystem ist also abgeschlossen bezüglich abzählbaren Vereinigungen. Somit ist die von einem Ring erzeugte monotone Klasse immer ein σ-Ring.

Umgekehrt ist jeder σ-Ring aufgrund seiner Stabilität bezüglich abzählbaren Vereinigungen und Schnitten immer auch eine monotone Klasse.

Literatur

  • Jürgen Elstrodt: Maß- und Integrationstheorie. 4., korrigierte Auflage. Springer, Berlin u. a. 2005, ISBN 3-540-21390-2
  • Achim Klenke: Wahrscheinlichkeitstheorie. 2. Auflage. Springer-Verlag, Berlin Heidelberg 2008, ISBN 978-3-540-76317-8