Produkt-σ-Algebra
Eine Produkt-σ-Algebra, auch Kolmogorowsche σ-Algebra[1] genannt, ist ein Begriff aus der Maßtheorie, einem Teilgebiet der Mathematik. Produkt-σ-Algebren erlauben die Definition von Produktmaßen, die den intuitiven Volumenbegriff auf höherdimensionale Räume verallgemeinern.
Definition
Gegeben sei eine Grundmenge, die das kartesische Produkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \Omega=\prod_{i \in I}\Omega_i } für eine nichtleere Indexmenge sei. Jede der Mengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega_i } sei zudem mit einer σ-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{A}_i } versehen. Die Produkt-σ-Algebra von Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle ({\mathcal {A}}_{i})_{i\in I}} (oder auch Kolmogorowsche σ-Algebra) ist dann definiert als
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bigotimes_{i \in I} \mathcal{A}_i:=\sigma\left(\{\pi_i^{-1}(A_i)\, | \,i \in I, \, A_i \in \mathcal{A}_i \}\right)} ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle\pi_i\colon \Omega \rightarrow \Omega_i} die Projektion auf die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} -te Komponente bezeichnet. Das Paar
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \biggl(\prod_{i\in I}\Omega_i,\bigotimes_{i\in I}\mathcal{A}_i\biggr)}
bildet einen Messraum, der auch als messbares Produkt der Familie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle ((\Omega_i,\mathcal{A}_i))_{i\in I}} bezeichnet wird.
Notationskonventionen
Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I=\{1,2\}} , so schreibt man häufig auch statt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle\bigotimes_{i=1}^2\mathcal{A}_i} .
Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{A}_i=\mathcal{A}} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i \in I} , so verwendet man teilweise auch die Notation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{A}^{\otimes I}} für die entsprechende Produkt-σ-Algebra.
Alternative Definitionen
Mittels messbarer Funktionen
Die Produkt-σ-Algebra lässt sich auch als die kleinste σ-Algebra definieren, bezüglich derer die Projektionen auf die einzelnen Komponenten messbar sind. Da Messbarkeit nur auf einem Erzeuger Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{E}_i} der σ-Algebren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{A}_i} überprüft werden muss, ergibt sich damit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bigotimes_{i \in I} \mathcal{A}_i = \sigma\biggl(\bigcup_{i \in I}\pi_i^{-1}(\mathcal{A}_i)\biggr) = \sigma\biggl(\bigcup_{i\in I}\pi_i^{-1}(\mathcal{E}_i)\biggr)} .
Damit ist die Produkt-σ-Algebra der Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\mathcal {A}}_{i}} die Initial-σ-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{I} } der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_i } :
- .
Als Produkt von Familien
Fasst man zwei σ-Algebren als Mengenalgebren auf und bildet das Produkt dieser Algebren , so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{C} } wieder eine Algebra und ein Erzeuger der Produkt-σ-Algebra:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{A}_1\otimes\mathcal{A}_2=\sigma (\mathcal{A}_1 \boxtimes \mathcal{A}_2) } .
Verallgemeinert man dies auf größere Indexmengen, so gilt: Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I} abzählbar (oder endlich), so gilt
wobei
das Produkt der Familie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\mathcal{A}_i)_{i\in I}} ist. Man beachte, dass das Produkt zweier σ-Algebren Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\mathcal {A}}_{1}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{A}_2} im Allgemeinen keine σ-Algebra ist. Jedoch ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{A}_1 \times \mathcal{A}_2} ein Halbring und insbesondere Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cap} -stabil.
Zylindermengen
Alternativ kann man für beliebige Indexmengen die Produkt-σ-Algebra auch als die von den Zylindermengen erzeugte σ-Algebra definieren. Dabei sind die Zylindermengen die Urbilder der Elemente einer σ-Algebra unter der kanonischen Projektion.
Beispiele
- Seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\Omega_1,\mathcal{A}_1) = (\{K,Z\},\{\emptyset,\{K\},\{Z\},\{K,Z\}\})} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\Omega_2,\mathcal{A}_2) = (\{a,b\},\{\emptyset,\{a,b\}\})} zwei Messräume. Dann ist die dazugehörige Produkt-σ-Algebra:
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\mathcal {A}}_{1}\otimes {\mathcal {A}}_{2}=\{\emptyset ,\{(K,a),(K,b)\},\{(Z,a),(Z,b)\},\{(K,b),(Z,b),(K,a),(Z,a)\}\}}
- Die Borelsche σ-Algebra auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^n} ist gleich der Produkt-σ-Algebra auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\mathcal{B}(\R))_{i \in \{1,\dotsc,n\}}} , es gilt folglich:
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\mathcal {B}}(\mathbb {R} ^{n})=\bigotimes _{i=1}^{n}{\mathcal {B}}(\mathbb {R} )}
- Sie ist die kleinste σ-Algebra, die alle Mengen der Art Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{A_1\times A_2 \times \dots \times A_n\, | \, A_i \in \mathcal{B}(\R)\} } enthält.
Anwendungen
Produkt-σ-Algebren sind die Grundlage für die Theorie der Produktmaße, die wiederum die Grundlage für den allgemeinen Satz von Fubini bilden.
Für die Stochastik sind Produkt-σ-Algebren von fundamentaler Bedeutung, um Aussagen über die Existenz von Produkt-Wahrscheinlichkeitsmaßen und Produkt-Wahrscheinlichkeitsräumen zu machen. Diese sind zum einen wichtig, um mehrstufige Zufallsexperimente zu beschreiben, und zum anderen grundlegend für die Theorie stochastischer Prozesse.
Literatur
- Achim Klenke: Wahrscheinlichkeitstheorie. 2. Auflage. Springer-Verlag, Berlin Heidelberg 2008, ISBN 978-3-540-76317-8
- Jürgen Elstrodt: Maß- und Integrationstheorie. Springer, Berlin u. a. 1996, ISBN 3-540-15307-1.
Einzelnachweise
- ↑ Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2., durchgesehene Auflage. Springer-Verlag, Heidelberg Dordrecht London New York 2011, ISBN 978-3-642-21025-9, S. 39, doi:10.1007/978-3-642-21026-6.