Ereignissystem

aus Wikipedia, der freien Enzyklopädie

Ein Ereignissystem,[1] auch Ereignisalgebra, Ereignisraum[2] oder Ereignisfeld genannt ist ein Mengensystem in der Stochastik, das alle Mengen, denen man eine Wahrscheinlichkeit zuweisen will, enthält. Diese Mengen werden dann auch Ereignisse genannt. Die Einschränkung auf ein Mengensystem, das kleiner als die Potenzmenge des Ergebnisraumes ist, erfolgt aufgrund negativer Aussagen wie des Satzes von Vitali, dass nicht allen Elementen der Potenzmenge sinnvoll ein Maß und damit eine Wahrscheinlichkeit zugeordnet werden kann.

Definition

Gegeben sei ein Ergebnisraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega } , der alle möglichen Ergebnisse eines modellierten Zufallsexperiments enthält. Dann heißt eine σ-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma } auf der Grundmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega } ein Ereignissystem, eine Ereignisalgebra, Ereignisraum oder Ereignisfeld.

Teilweise wird auch das Paar Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\Omega, \Sigma) } als Ereignisraum bezeichnet[3], dies entspricht einem Messraum im Sinne der Maßtheorie.

Interpretation

Grundlegend bei der Modellierung eines Zufallsexperiments sind folgende Forderungen:

  • Man will der Tatsache, dass irgendetwas passiert, die Wahrscheinlichkeit 1 zuordnen können. Also muss der Obermenge eine Wahrscheinlichkeit zuordenbar sein und sie demnach in der Ereignismenge sein.
  • Kann man einem Ereignis eine Wahrscheinlichkeit zuordnen, so will man auch der Tatsache, dass dieses Ereignis nicht eintrifft, eine Wahrscheinlichkeit zuordnen können. Also muss mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A } auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A^\mathrm c = \Omega \setminus A } in der Ereignismenge sein.
  • Treten abzählbar viele Ereignisse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (A_n)_{n \in \N} } auf, so soll auch das Ereignis, dass mindestens eines dieser Ereignisse eintritt, in der Ereignismenge sein. Dies ist genau die Vereinigung der abzählbar vielen .

Eine Ereignismenge muss nun nicht zu groß sein, um nicht-messbare Mengen zu vermeiden, aber stabil gegenüber diesen Operationen sein, um sinnvolle Modellierungen zu ermöglichen. Das Mengensystem, das diese Forderungen erfüllt, ist eine σ-Algebra, die dementsprechend kanonisch zur Modellierung von Ereignismengen genutzt wird.

Beispiele

Betrachten wir die Ergebnismenge , sie besitzt die drei Ergebnisse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega_1=1,\omega_2=2,\omega_3=3}

Eines der möglichen Ereignissysteme wäre

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma_1:=\{\Omega, \emptyset , \{1 \}, \{2,3\}\} } .

Zu beachten ist, dass nicht zwangsläufig zu jedem Ergebnis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega_i } auch das entsprechende Ereignis in dem Ereignissystem enthalten sein muss.

Kanonische Ereignissysteme

Endliche oder abzählbar unendliche Ergebnismengen

Auf endlichen oder abzählbar unendlichen Ergebnismengen wählt man als Ereignissystem meist die Potenzmenge, da sie leicht zu handhaben ist und in diesem Fall noch zu keinen Paradoxien führt. Beispielsweise stattet man die Ergebnismenge der natürlichen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \N } mit dem Ereignissystem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal P (\N) } aus.

Reelle Ergebnismenge

Ist die Ergebnismenge die Menge der reellen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R} oder eine überabzählbare Teilmenge von wie zum Beispiel , so stattet man diese immer mit der Borelschen σ-Algebra oder der entsprechend eingeschränkten Spur-σ-Algebra aus. Diese Ereignissysteme sind kleiner als die Potenzmengen, enthalten aber alle Mengen, die man naiv konstruieren kann. Die Borelsche σ-Algebra kann auch für beliebige topologische Räume definiert werden.

Ergebnismengen als Produkte

Sind die Ergebnismengen Produkte von mehreren Mengen, so wählt man stets die Produkt-σ-Algebra als Ereignissystem.

Einordnung

Es gilt folgende Hierarchie:

  • Ergebnisse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega } sind Elemente der Ergebnismenge und der Ereignisse
  • Ereignisse sind Teilmengen der Ergebnismenge und Elemente des Ereignissystems. Sie enthalten als Elemente Ergebnisse.
  • Ereignissysteme sind Teilmengen der Potenzmenge.

Insbesondere muss zwischen dem Ergebnis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega } und dem Ereignis unterschieden werden.

Literatur

  • Christian Hesse: Angewandte Wahrscheinlichkeitstheorie. 1. Auflage. Vieweg, Wiesbaden 2003, ISBN 3-528-03183-2.
  • Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, doi:10.1515/9783110215274.

Einzelnachweise

  1. Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2., durchgesehene Auflage. Springer-Verlag, Heidelberg Dordrecht London New York 2011, ISBN 978-3-642-21025-9, S. 195, doi:10.1007/978-3-642-21026-6.
  2. David Meintrup, Stefan Schäffler: Stochastik. Theorie und Anwendungen. Springer-Verlag, Berlin Heidelberg New York 2005, ISBN 978-3-540-21676-6, S. 59, doi:10.1007/b137972.
  3. Georgii: Stochastik. 2009, S. 10.