Ergebnisraum

aus Wikipedia, der freien Enzyklopädie

Als Ergebnisraum, Ergebnismenge, Resultatenmenge, Omegamenge oder Stichprobenraum[1] Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} bezeichnet man im mathematischen Teilgebiet der Stochastik die Menge aller möglichen Ergebnisse eines Zufallsexperiments. Zur Beschreibung eines solchen Experiments mit Hilfe eines Wahrscheinlichkeitsraums werden gewissen Teilmengen des Ergebnisraums, den Ereignissen, Wahrscheinlichkeiten zugeordnet.

Die Elemente eines Ergebnisraumes müssen sich gegenseitig ausschließen, sowie in ihrer Gesamtheit, den ganzen Raum möglicher Ergebnisse abdecken.

Um bei mehrstufigen Zufallsexperimenten einen geeigneten Ergebnisraum aufzustellen, kann als übersichtliches Hilfsmittel mitunter ein Entscheidungsbaum verwendet werden.

Beispiele

  • Beim Würfeln mit einem Würfel lautet der Ergebnisraum:
  • Beim einfachen Münzwurf lautet der Ergebnisraum: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega = \{K,Z\}; (K = \text{Kopf}, Z = \text{Zahl})}
  • Beim gleichzeitigen Münzwurf mit zwei unterscheidbaren Münzen lautet der Ergebnisraum: , wobei die großen Münzen durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (K = \text{Kopf}, Z = \text{Zahl})} und die kleinen Münzen durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (k = \text{Kopf}, z = \text{Zahl})} dargestellt sind.
  • Es ist durchaus möglich, dass es zu einem Zufallsexperiment zwei oder mehr vernünftige Ergebnisräume gibt. Betrachte man beispielsweise das Zufallsexperiment eine Karte aus einem Kartenspiel zu ziehen, so kann die Ergebnismenge die Kartenwerte (Ass, 2, 3, …) oder die Farbenwerte (Kreuz, Pik, Herz, Karo) umfassen. Eine vollständige Aufzählung der Ergebnisse würde jedoch sowohl den Kartenwert als auch die Farbe berücksichtigen. Eine entsprechende Ergebnismenge kann als kartesisches Produkt der beiden vorausgegangenen Ergebnismengen erzeugt werden.

Bedeutung

Zur Berechnung der Wahrscheinlichkeit bei diskreten Ereignissen nach Laplace ist die Kenntnis der Mächtigkeit des Ergebnisraums unbedingt notwendig. Ergebnisräume treten auch bei Wahrscheinlichkeitsräumen auf. Ein Wahrscheinlichkeitsraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle ( \Omega, \Sigma,P)} baut auf einem Ergebnisraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} auf, definiert aber eine Menge von „interessanten Ereignissen“, die Ereignisalgebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma} , auf der das Wahrscheinlichkeitsmaß definiert wird. Für eine explizitere Darstellung im Kontext und mit einem Beispiel siehe Wahrscheinlichkeitstheorie.

Begriffsklärung: Ereignisraum – Ergebnisraum

Der Begriff des Ergebnisraumes ist das Analogon zum Ereignisraum in der induktiven Statistik.

In der Literatur wird nicht immer sorgfältig zwischen den Begriffen Ereignissystem, Ereignisraum (im Sinne des Messraumes) und Ergebnisraum unterschieden. Deshalb kommt es vor, dass der Ergebnisraum als Ereignisraum bezeichnet wird.

Siehe auch

  • Phasenraum, die Menge aller möglichen Zustände eines dynamischen Systems

Literatur

  • Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, doi:10.1515/9783110215274.
  • Rainer Schlittgen: Einführung in die Statistik: Analyse und Modellierung von Daten. 9. Auflage, Oldenbourg, München Wien 2000, ISBN 3-486-25465-0

Einzelnachweise

  1. Georgii: Stochastik. 2009, S. 8.