Monge-Ampèresche Gleichung
Eine Monge-Ampère'sche Gleichung, oder Monge-Ampère'sche Differentialgleichung, ist eine spezielle nichtlineare partielle Differentialgleichung zweiter Ordnung in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Variablen.
Sie wurde von Gaspard Monge Anfang des 19. Jahrhunderts eingeführt, um ein Massentransportproblem ("problème du remblai-déblai", etwa: "Problem von Erdaufschüttung und -aushub") für militärische Zwecke zu lösen. Trotz ihrer recht einfachen Form ist sie im Allgemeinen schwierig zu lösen. Die Gleichung ist zusätzlich nach André-Marie Ampère benannt, der sich mit ihr um 1820 befasste.
Mathematische Formulierung
Allgemein hat eine Monge-Ampère'sche Gleichung über einem offenen Gebiet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega \subset \mathbb{R}^n} die Form
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \det\, D^2 u = f}
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u\colon \Omega \to \mathbb{R} } , mit die unbekannte Funktion ist, Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f\colon \Omega \times \mathbb {R} ^{n+1}\to \mathbb {R} } eine gegebene Funktion Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f=f(x_{1},\ldots ,x_{n},u,u_{x_{1}},\ldots u_{x_{n}})} , und
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D^2 u = \begin{pmatrix} u_{x_1x_1} & \cdots & u_{x_1 x_{n}} \\ \vdots & \ddots & \vdots \\ u_{x_n x_1} & \cdots & u_{x_n x_n} \end{pmatrix} \qquad \mbox{mit } u_{x_i x_j} = \frac{\partial^2 u}{\partial x_i \partial x_j}. }
die Hesse-Matrix von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u} . Speziell für den zweidimensionalen Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=2} ergibt sich die einfache Gestalt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_{xx} u_{yy} - u_{xy}^2 = f}
mit und den Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(x,y)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x,y,u,u_x,u_y)} . Oft wird für den Fall n=2 aber auch die folgende Darstellung als allgemeine Monge-Ampère'sche Gleichung bezeichnet:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Ar + 2Bs + Ct + (rt - s^2) = E, \qquad \mbox{mit } r=u_{xx},\ s=u_{xy},\ t=u_{yy},\ p=u_x,\ q=u_y, }
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A, B, C} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} Funktionen von (Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle x,y,u,p,q} ) sind. Man erkennt gleich, dass sich mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=B=C=0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E=f} die obige einfachere Gestalt ergibt.
Konkretes Beispiel
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x,y) = 4 (1-y^2) (1-x^2) - 16 x^2y^2} . Dann ist eine Lösung der Monge-Ampère'schen Differentialgleichung, denn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_{xx} = -2(1-y^2), } Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_{yy} = -2(1-x^2), } Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_{xy} = u_{yx} = -4xy, } und daher Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \det\, D^2 u = \det \begin{pmatrix} -2(1-y^2) & -4xy \\ -4xy & -2(1-x^2) \end{pmatrix} = f(x,y). }
Klassifizierung als partielle Differentialgleichung
Eine Monge-Ampère'sche Gleichung ist eine voll nichtlineare partielle Differentialgleichung zweiter Ordnung in Variablen. Erläuterungen:
- "partielle Differentialgleichung", denn es wird eine von mehreren Variablen abhängende Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u} gesucht, deren partielle Ableitungen der gegebenen Gleichung gehorchen müssen.
- "voll nichtlinear", da alle Terme mit zweiten (also den höchsten) Ableitungen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u} quadratisch auftauchen.
Eine wichtige Klasse sind die elliptischen Monge-Ampère'schen Gleichungen, die für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=2} die Bedingungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle AC - B^2 + E > 0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t+A>0} erfüllen, bzw. in der einfacheren Form einfach .
Anwendungen
Die meisten Anwendungen der Monge-Ampère'schen Gleichung sind innermathematischer Art insbesondere in der Differentialgeometrie. Beim Minkowski-Problem beispielsweise wird eine strikt konvexe Hyperfläche mit vorgegebener Gaußkrümmung gesucht, was auf eine Monge-Ampère'sche Gleichung führt. Das Problem wurde 1953 von Nirenberg gelöst.
Eine unerwartete Anwendung im Bereich der String-Theorie ergab sich durch ein 1978 veröffentlichtes Resultat von Yau, der eine Vermutung von Calabi über die Krümmung bestimmter Kähler-Mannigfaltigkeiten mit Hilfe der Lösung einer komplexen Monge-Ampère'schen Gleichung bewies (Satz von Yau). Man spricht heute entsprechend von Calabi-Yau-Mannigfaltigkeiten.
Bedeutende Beiträge zu Monge-Ampère'schen Gleichungen im Verlaufe des 20. Jahrhunderts kamen von Hermann Weyl, Franz Rellich, Erhard Heinz, Louis Nirenberg, Shing-Tung Yau, Luis Caffarelli, Alexei Wassiljewitsch Pogorelow, Thierry Aubin, Sébastien Boucksom, Alessio Figalli und Guido de Philippis.