Neyman-Pearson-Test

aus Wikipedia, der freien Enzyklopädie

Der Neyman-Pearson-Test ist ein spezieller statistischer Test von zentraler Bedeutung in der Testtheorie, einem Teilgebiet der mathematischen Statistik. Im Anwendungsfall sind seine Voraussetzungen meist zu restriktiv, seine Bedeutung erlangt er durch das Neyman-Pearson-Lemma, das besagt, dass der Neyman-Pearson-Test ein gleichmäßig bester Test ist. Häufig wird dann ausgehend von diesem Ergebnis versucht, diese Eigenschaft durch geeignete Wahl der Rahmenbedingungen auf größere Klassen von Tests zu erweitern. Beispiel hierfür wären Modelle mit monotonem Dichtequotient, für die unter Umständen gleichmäßig beste einseitige Tests existieren.

Siehe auch Randomisierter Test.

Der Test ist nach Jerzy Neyman und Egon Pearson benannt.

Formulierung

Rahmenbedingungen

Gegeben sei ein statistisches Modell Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X, \mathcal A, \{P_0, P_1 \} ) } , wobei Nullhypothese und Alternative jeweils einfache Hypothesen seien. Somit ist sowohl die Nullhypothese als auch die Alternative durch je ein Wahrscheinlichkeitsmaß gegeben.

Des Weiteren habe die Nullhypothese die Wahrscheinlichkeitsdichtefunktion und die Alternative die Wahrscheinlichkeitsdichtefunktion .

Definiere

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R(x):= \begin{cases} \frac{f_1(x)}{f_0(x)} & \text{falls}\quad f_0(x)> 0 \\ \infty & \text{falls}\quad f_0(x)=0 \end{cases} } .

Definition

Unter den obigen Rahmenbedingungen heißt ein Test

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi \colon X \to [0,1] }

ein Neyman-Pearson-Test zum Schwellenwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c } , wenn

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi(x)= \begin{cases} 1 & \text{falls}\quad R(x)> c \\ 0 & \text{falls}\quad R(x)<c \end{cases} }

ist.

Eigenschaften

Die Konstruktion des Tests lässt sich aus der in der Schätztheorie bewährten Maximum-Likelihood-Methode motivieren. Anstelle wie in der Schätztheorie denjenigen Parameter auszuwählen, für den die Beobachtung am wahrscheinlichsten ist, wird beim Neyman-Pearson-Test die Nullhypothese angenommen oder abgelehnt, wenn die entsprechende Quotientenfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R } einen gewissen Wert unterschreitet oder überschreitet. Somit ist der Neyman-Pearson-Test der einfachst mögliche Likelihood-Quotienten-Test.

Nach dem Neyman-Pearson-Lemma existiert unter den obigen Rahmenbedingungen immer ein Neyman-Pearson-Test zum Niveau Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha } . Um diesen zu konstruieren wählt man als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c } ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1-\alpha)} -Quantil der Verteilung . Ist dann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_0(R=c)=0 } , so ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi(x)= \begin{cases} 1 & \text{ falls } \quad R(x)> c \\ 0 & \text{ sonst } \end{cases}}

ein Neyman-Pearson-Test zum Niveau Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha } . Ist aber Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_0(R=c) > 0 } , so ist der Neyman-Pearson-Test zum Niveau Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha } gegeben durch

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \Phi (x)={\begin{cases}1&{\text{falls}}\quad R(x)>c\\l&{\text{falls}}\quad R(x)=c\\0&{\text{falls}}\quad R(x)<c\end{cases}}} ,

wobei

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l:= \frac{\alpha-P_0(R>c)}{P_0(R=c)} }

ist.

Nach dem Neyman-Pearson-Lemma sind die so gewonnenen Tests auch immer gleichmäßig beste Tests zum Niveau Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} für das oben gestellte Testproblem.

Nach dem Lemma von Stein konvergiert außerdem die Trennschärfe des Neyman-Pearson-Tests mit exponentieller Geschwindigkeit bei wachsender Stichprobengröße gegen 1. Somit sind die Neyman-Pearson-Tests nicht nur gleichmäßig besser als alle weiteren Tests, sondern die Wahrscheinlichkeit für einen Fehler 2. Art konvergiert bei ihnen mit hoher Geschwindigkeit gegen 0.

Literatur