Ohmsches Gesetz
Das ohmsche Gesetz besagt: Die Stärke des durch ein Objekt fließenden elektrischen Stroms ist proportional der elektrischen Spannung. Oder umgekehrt: Ist der als Quotient aus Spannung zu Stromstärke definierte elektrische Widerstand konstant, also unabhängig von Spannung und Stromstärke, so gilt am Objekt das ohmsche Gesetz; das Objekt hat dann ein ohmsches Verhalten.
Die Bezeichnung des Gesetzes ehrt Georg Simon Ohm, der diesen Zusammenhang für einige einfache elektrische Leiter als Erster schlüssig nachweisen konnte.
Tatsächlich gilt die Annahme des konstanten Widerstandes nur in engem Rahmen und nur für einige Stoffe – insbesondere für Metalle bei konstanter Temperatur. Das ohmsche Gesetz ist heute als Definition eines als ohmsch bezeichneten Widerstands anzusehen. Es ist die Basis für das Verständnis des Zusammenhangs zwischen Stromstärke und Spannung in elektrischen Stromkreisen. Zusammen mit den Eigenschaften einiger weiterer idealer Bauelemente ist es Grundlage für viele theoretische und mathematische Behandlungen und für Schaltungssimulationen.
Beschreibung
Das Verhältnis einer an einem elektrischen Leiter (Widerstand) anliegenden elektrischen Spannung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} zur Stärke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I} des hindurchfließenden elektrischen Stromes wird definiert als die Größe elektrischer Widerstand,[1] die mit dem Formelzeichen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R} bezeichnet wird. Bei zeitlich veränderlichen Größen sind Augenblickswerte zu verwenden.[2] Das Verhältnis darf keine Zeitfunktion sein.[3] Das ohmsche Gesetz betrachtet den Widerstand als eine von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I} unabhängige Konstante und ist insofern eine Idealisierung. Damit gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R = \frac UI = \mathrm{const.}}
Eine passive elektrische Schaltung mit einer Proportionalität zwischen Stromstärke und Spannung hat ein ohmsches Verhalten und weist einen konstanten elektrischen Widerstand auf, der ohmscher Widerstand genannt wird. Auch bei nicht-ohmschem Verhalten ist die Größe Widerstand als Verhältnis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U/I} definiert, dann liegt allerdings eine Abhängigkeit des Widerstands z. B. von der Spannung vor. Etwa eine Glühlampe und eine Diode verhalten sich nichtlinear. Für die Beschreibung solchen Verhaltens kann der Begriff differentieller Widerstand hilfreich sein, der den Zusammenhang zwischen einer kleinen Spannungsänderung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta U} und der zugehörigen Stromstärkeänderung angibt.
Die zugehörige Gleichung lässt sich (durch Äquivalenzumformungen) in drei Schreibweisen darstellen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R = \frac U I \quad\Leftrightarrow\quad U =R\cdot I \quad\Leftrightarrow\quad I=\frac U R}
Vielfach wird schon allein die Definition der Größe Widerstand als Quotient von Spannung und Stromstärke als „ohmsches Gesetz“ bezeichnet, obwohl einzig die Konstanz des Widerstands die Kernaussage des ohmschen Gesetzes ist.
Lokale Betrachtungsweise
In einer lokalen Betrachtung wird das ohmsche Gesetz durch den linearen Zusammenhang zwischen dem Stromdichte-Vektorfeld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec J} (in Komponenten Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle J_{m}} ) und dem elektrischen Feldstärke-Vektorfeld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec E} (in Komponenten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_m} ) mit dem elektrischen Leitfähigkeits-Tensor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol{\sigma}} (in Komponenten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_{mn}} ) als Transportkoeffizient beschrieben:
- , oder in Komponenten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J_m = \sigma_{mn} \, E_n\ ,}
wobei die Indizes m und n von 1 bis 3 laufen (x, y und z).
In isotropen Materialien kann der Tensor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol{\sigma}} durch einen Skalar Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma} ersetzt werden, und es gilt:
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\vec {J}}=\sigma \,{\vec {E}}}
Wird die Bewegung der freien Elektronen analog der ungeordneten Molekülbewegung in einem idealen Gas betrachtet, so erscheint die Konstanz der elektrischen Leitfähigkeit plausibel: Die Zähldichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} der Elektronen ist dann innerhalb des Leiters konstant. Für die mittlere Geschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar v} der Elektronen gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar v=10{,}6\cdot 10^6\,\frac{\mathrm{m}}{\mathrm{s}}}
Die mittlere Wegstrecke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda} zwischen zwei Stößen an Ionen im Metall wird in einer typischen Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau_s} zurückgelegt:
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \lambda ={\bar {v}}\,\tau _{s}}
In dieser Zeit erfahren die Elektronen eine Beschleunigung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a=\frac{e\,E}{m_\mathrm e}}
durch das angelegte elektrische Feld, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e} die Elementarladung und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_\mathrm e} die Elektronenmasse ist. Die Elektronen erreichen somit eine Driftgeschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_\mathrm d} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_\mathrm d = a \tau_s} . Setzt man dies in die Gleichung für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma} ein, so erhält man:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma = \frac JE = \frac{n\,e\,v_\mathrm d}E = \frac{n\,e\,a\,\tau_s}E = \frac{n\,e^2\tau_s}{m_\mathrm e} = \frac{n\,e^2\lambda}{m_\mathrm e\,\bar v}}
Die Größen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar v} hängen nur von der Geschwindigkeitsverteilung innerhalb der „Elektronenwolke“ ab. Da die Driftgeschwindigkeit aber circa 10 Größenordnungen kleiner ist als die mittlere Geschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar v} , ändert sich die Geschwindigkeitsverteilung durch das Anlegen eines elektrischen Feldes nicht, und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau_s} und somit der ganze Ausdruck für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma} sind konstant.
Geschichte
Georg Simon Ohm suchte nach einem mathematischen Zusammenhang – einer Formel – zur Berechnung der „Wirkung fließender Elektrizität“ (heutiger Begriff: Stromstärke) in Abhängigkeit vom Material und von den Dimensionen eines Drahtes. Dabei ist er nicht zufällig auf das nach ihm benannte Gesetz gestoßen, sondern hat viel Zeit und viel zielgerichtete Arbeit investiert. Die von ihm gefundene Gesetzmäßigkeit in der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I = \frac U R} erscheint uns nahezu als Trivialität: Je größer die elektrische Spannung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} bzw. je kleiner der elektrische Widerstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R} ist, umso größer ist die Stromstärke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I} . Diese Zusammenhänge lassen sich heute mit Versuchsgeräten, die in jeder Schule vorhanden sind, mit ausreichend geringen Toleranzen sehr einfach zeigen.
Im Jahr 1825 standen Ohm solche Geräte nicht zur Verfügung. Voltasäulen, Batterien aus Daniell-Elementen und sogenannte Trog-Batterien (das sind mehrere in Reihe geschaltete Daniell-Elemente) in verschiedenen Ausführungen dienten damals als Spannungsquellen. Die Spannungs- und Strommessgeräte jener Zeit waren für Ohms hochgestecktes Ziel eher als Nachweisgeräte, nicht aber als ausreichend exakte Messgeräte geeignet, um damit genaue Messwerte für die Entwicklung einer Formel zu erhalten.
Ohms experimentell-innovative Leistungen bestanden darin, bereits entwickelte Gerätekomponenten sowie die Entdeckungen mehrerer zeitgenössischer Forscher geschickt kombiniert zu haben. Die daraus gewonnenen Messdaten hat er dann mathematisch analysiert und ihren physikalischen Zusammenhang interpretiert.
Zunächst veröffentlichte Ohm 1825 in den Annalen der Physik und Chemie einen Artikel,[4] in dem er eine von ihm entwickelte Messvorrichtung beschrieb, mit der er zu exakteren Messwerten kam als andere Forscher vor ihm. Ohm nutzte hierfür einerseits die 1820 von Hans Christian Ørsted beschriebene magnetische Wirkung des elektrischen Stroms[5] und andererseits eine sehr sensible Vorrichtung zur Kraftmessung: Er ersetzte in der Messvorrichtung der coulombschen Drehwaage den darin vorhandenen Probekörper durch einen kleinen Stabmagneten, stellte diese Drehwaage auf einen stromdurchflossenen Draht und maß die Kraftwirkung des Stromes auf den Magneten. Diese Messung führte er mit verschiedenen Drähten durch und suchte dann nach einem mathematischen Zusammenhang zwischen Drähten und Kräften.
Die 1825 im Artikel Vorläufige Anzeige des Gesetzes, nach welchem Metalle die Contactelectricität leiten veröffentlichten Messergebnisse konnten jedoch nicht zu einer allgemeingültigen Formel führen, weil – analysiert mit heutigen Begriffen – die elektrische Leistung aller damals benutzten Spannungsquellen (unter anderem durch variierende Bildung von Gasbläschen auf den Metallplatten) stark schwankt. Diesen Effekt beschrieb Ohm mehrfach: Die „Wirkung auf die Nadel“ ändere sich während der Einzelmessungen und sei unter anderem auch von der Reihenfolge der vorgenommenen Messungen abhängig.[6] Trotzdem leitete er im veröffentlichten Artikel aus seinen Messwerten letztendlich eine Formel ab,[7] die die angegebenen Messwerte annähernd reproduziert.
Ohms Veröffentlichung in den Annalen der Physik und Chemie wurde vom Herausgeber der Zeitschrift durch eine Fußnote ergänzt.[8] Sie weist auf die Entdeckung des Thermoelements durch Thomas Johann Seebeck hin, über die 1823 ein von Ørsted verfasster Bericht in den Annalen abgedruckt wurde[9] und Ohm zu seinem experimentellen Durchbruch verhalf.
In Bestimmung des Gesetzes, nach welchem Metalle die Contactelektricität leiten[10] beschrieb Ohm 1826 zunächst kritisch das „beständige Wogen der Kraft“ in seinen vorhergehenden Versuchen.[11] Es folgt die Beschreibung[12] einer von ihm entworfenen „Drehwaage“,[13] die er von einem Handwerker anfertigen ließ (siehe Abbildung). Das bügelförmige Bauelement Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a,b,b',a'} ist ein Thermoelement aus einem Wismutbügel, an dessen Schenkeln jeweils ein Kupferstreifen befestigt ist. Ein Schenkel wurde mit siedendem Wasser erwärmt, der andere mit Eiswasser gekühlt. (Die Gefäße für die Temperaturbäder sind nicht dargestellt.) Ohm führte seine Experimente im Januar 1826 durch.
Die reproduzierbare Temperaturdifferenz von ca. 100 °C zwischen den Schenkeln des Bügels erzeugt eine reproduzierbare „erregende Kraft“,[14] die nicht unkontrolliert „wogt“, weil hier keine chemischen Reaktionen ablaufen. Laut heutigen Definitionen entspricht diese „erregende Kraft“ einer Leerlaufspannung von ca. 7,9 mV.
Ohm maß die auf die Magnetnadel wirkenden Kräfte, wenn er die Enden verschieden langer Drähte in die mit Quecksilber gefüllten „Eierbecher“ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m'} tauchte. Aus den so gewonnenen Messdaten entwickelte er die Formel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X = \frac {a} {b + x}} . Hierbei steht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} für den elektrischen Strom, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} für die „erregende Kraft“, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b} steht für den Leitungswiderstand der Drehwaage (inklusive Spannungsquelle) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} für die Widerstandslänge der benutzten Drähte. In einem weiteren Artikel desselben Jahres[16] benutzte Ohm den Begriff „elektrische Spannung“ statt „erregende Kraft“.
Mit Hilfe des Thermoelements war es Ohm also gelungen, exakt jene Gleichung zu entwickeln, die wir noch heute für die Beschreibung der Zusammenhänge in einem Stromkreis benutzen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I = \frac U{R_\mathrm i + R_\mathrm a}} (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_\mathrm i} : Innenwiderstand der Spannungsquelle; Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_\mathrm a} : Außenwiderstand der an die Spannungsquelle angeschlossenen Komponenten)
1827 veröffentlichte Ohm das Buch Die galvanische Kette, mathematisch bearbeitet.[17] Auf den ersten Seiten dieser Veröffentlichung postulierte er, dass sich elektrischer Strom analog zur Wärmeleitung in festen Körpern verhält (siehe hierzu Fouriersches Gesetz). Geometrisch argumentierend leitete er daraus zunächst die – durch seine Messungen von 1826 belegten – Abhängigkeiten des Stroms von der Leiterlänge, vom Leitungsquerschnitt sowie vom Material unterschiedlicher Leiter her. Dabei berücksichtigte er jetzt alle Bestandteile eines Stromkreises, also auch jene Leiter, aus denen das Thermoelement seiner Drehwaage besteht, und fasste somit die Innen- und Außenwiderstände eines Stromkreises zur Größe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L} zusammen. Hierdurch verlieh er seiner Entdeckung die mathematische Struktur, die wir heute als ohmsches Gesetz kennen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S = \frac A{L}} (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} : „Größe des Stroms“, heute Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I} ; Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} : „Summe aller Spannungen“, heute Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} ; Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L} : Innen- + Außenwiderstände, heute Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R} )[18], also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I = \frac U{R}}
Im darauf folgenden Text leitete Ohm u. a. auch die Zusammenhänge zur Reihen- und Parallelschaltung von Leitern – also von Widerständen – schlüssig her.
In seinen Veröffentlichungen von 1826/27 erklärte Ohm – damals „nur“ Lehrer für Physik und Mathematik – die Beobachtungen vieler anerkannter Wissenschaftler anders, als sie es getan hatten: Sie stützten ihre Beobachtungen und Überlegungen, indem sie Modelle und Theorien zur Leitung des Stroms formulierten. Ohm hingegen berief sich auf seine Messergebnisse und auf geometrische Überlegungen. Dies mag der Grund dafür sein, dass die Bedeutung seiner Arbeiten von der Wissenschaftlergemeinde nicht sofort akzeptiert wurde: „Erst im Laufe der 30er Jahre wurde sein Gesetz zögernd in Deutschland anerkannt; international wurde es erst nach einer Nachentdeckung im Jahr 1837 zur Kenntnis genommen.“[19]
Literatur
- Georg Simon Ohm: Die galvanische Kette. Berlin, 1827 (Digitalisat und Volltext im Deutschen Textarchiv).
Weblinks
Einzelnachweise
- ↑ IEC 60050, siehe DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik in DIN und VDE: Internationales Elektrotechnisches Wörterbuch – IEV. Eintrag 131–12–04
- ↑ EN 80000-6, Größen und Einheiten − Teil 6: Elektromagnetismus, 2008; Eintrag 6–46
- ↑ DKE-IEV-Wörterbuch Eintrag 131–12–02, Fußnote N4.
- ↑ Georg Simon Ohm: Vorläufige Anzeige des Gesetzes, nach welchem Metalle die Contactelektricität leiten sowie Späterer Nachtrag. In: J. C. Poggendorff (Hrsg.) Annalen der Physik und Chemie. Berlin 1825, Band 80, S. 79–88. (PDF)
- ↑ vermutlich der erste Artikel zu Hans Christian Ørsteds Entdeckung in deutscher Sprache: Ludwig Wilhelm Gilbert: Ein electrisch-magnetischer Versuch von dem Prof. Oersted. In: L. W. Gilbert (Hrsg.): Annalen der Physik und Chemie. Leipzig 1823, Band 73, S. 278. (PDF)
- ↑ Georg Simon Ohm: Vorläufige Anzeige des Gesetzes, nach welchem Metalle die Contactelektricität leiten sowie Späterer Nachtrag. In: J. C. Poggendorff (Hrsg.) Annalen der Physik und Chemie. Berlin 1825, Band 80, S. 79–88 (speziell S. 83 bzw. 87).
- ↑ Georg Simon Ohm: Vorläufige Anzeige des Gesetzes, nach welchem Metalle die Contactelektricität leiten sowie Späterer Nachtrag. In: J. C. Poggendorff (Hrsg.) Annalen der Physik und Chemie. Berlin 1825, Band 80, S. 79–88 (speziell S. 84).
- ↑ Georg Simon Ohm: Vorläufige Anzeige des Gesetzes, nach welchem Metalle die Contactelektricität leiten sowie Späterer Nachtrag. In: J. C. Poggendorff (Hrsg.) Annalen der Physik und Chemie. Berlin 1825, Band 80, S. 79–88 (speziell S. 83, Fußnote).
- ↑ Ludwig Wilhelm Gilbert: Notiz von neuen electrisch-magnetischen Versuchen des Herrn Seebeck in Berlin, mitgetheilt von Hrn Oersted. In: L. W. Gilbert (Hrsg.): Annalen der Physik und Chemie. Leipzig 1823, Band 73, S. 430–432. (PDF)
- ↑ Georg Simon Ohm: Bestimmung des Gesetzes, nach welchem Metalle die Contactelektricität leiten, nebst einem Entwurfe zur Theorie des Voltaischen Apparates und des Schweiggerschen Multiplikators. In: J. S. C. Schweigger (Hrsg.): Journal für Chemie und Physik. Halle 1826, Band 46, S. 137–166. (PDF)
- ↑ Georg Simon Ohm: Bestimmung des Gesetzes, nach welchem Metalle die Contactelektricität leiten, nebst einem Entwurfe zur Theorie des Voltaischen Apparates und des Schweiggerschen Multiplikators. In: J. S. C. Schweigger (Hrsg.): Journal für Chemie und Physik. Halle 1826, Band 46, S. 137–166 (speziell S. 139).
- ↑ Georg Simon Ohm: Bestimmung des Gesetzes, nach welchem Metalle die Contactelektricität leiten, nebst einem Entwurfe zur Theorie des Voltaischen Apparates und des Schweiggerschen Multiplikators. In: J. S. C. Schweigger (Hrsg.): Journal für Chemie und Physik. Halle 1826, Band 46, S. 137–166 (speziell S. 144–149).
- ↑ Georg Simon Ohm: Bestimmung des Gesetzes, nach welchem Metalle die Contactelektricität leiten, nebst einem Entwurfe zur Theorie des Voltaischen Apparates und des Schweiggerschen Multiplikators. In: J. S. C. Schweigger (Hrsg.): Journal für Chemie und Physik. Halle 1826, Band 46, S. 137–166 (speziell Tafel 3, Figur 1). (PDF)
- ↑ Georg Simon Ohm: Bestimmung des Gesetzes, nach welchem Metalle die Contactelektricität leiten, nebst einem Entwurfe zur Theorie des Voltaischen Apparates und des Schweiggerschen Multiplikators. In: J. S. C. Schweigger (Hrsg.): Journal für Chemie und Physik. Halle 1826, Band 46, S. 137–166 (speziell S. 151).
- ↑ Georg Simon Ohms Laborbuch von 1825/26. Sondersammlung des Deutschen Museums in München.
- ↑ Georg Simon Ohm: Versuch einer Theorie der durch galvanische Kräfte hervorgebrachten elektroskopischen Erscheinungen. In: J. C. Poggendorff (Hrsg.): Annalen der Physik und Chemie. Berlin 1826, Band 82, S. 459–469 (speziell S. 459). (PDF)
- ↑ Georg Simon Ohm: Die galvanische Kette, mathematisch bearbeitet. Berlin: Riemann 1827. Digitalisat und Volltext im Deutschen Textarchiv; Digitalisat als PDF; [Reprint der Ausgabe, [Riemann], 1827] Saarbrücken 2006, ISBN 3-939962-03-1.
- ↑ Georg Simon Ohm: Die galvanische Kette, mathematisch bearbeitet. Berlin: Riemann 1827, S. 36.
- ↑ Jörg Meya u. a.: Das fünfte Element. Wirkungen und Deutungen der Elektrizität. Reinbek bei Hamburg 1987, ISBN 3-499-17726-9, S. 194.