Ordnungstopologie
Auf einer total geordneten Menge kann man in natürlicher Weise eine Topologie einführen, die mit der Ordnung verträglich ist. Diese Topologie wird Ordnungstopologie genannt. Einige Begriffe aus Topologie und Metrik wie diskret, dicht und vollständig lassen sich so auf Ordnungen übertragen.
Definition
Gegeben sei eine total geordnete Menge [1] Das heißt, es gelten die zwei Gesetze:
|
(Transitivität) |
|
(Trichotomie) |
für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a,b,c\in X .}
Um Fallunterscheidungen an den Intervallrändern zu vermeiden, wird zunächst die Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X } in die Menge
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline{X} := \left\{-\infty \right\} \, \cup_{<} \, X \, \cup_{<} \, \left\{+\infty\right\} } [2]
eingebettet und danach werden mittels zweier Grenzen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a,b \in \overline{X} } die Intervalle
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{x\in X \,\mid\, a<x<b\} =: \left]a,b\right[ }
gebildet.[3] Sie sind allesamt Teilmengen von und definieren als Basis die Ordnungstopologie in der folgenden Weise:
- Die offenen Mengen der Ordnungstopologie sind die beliebigen, auch unendlichen Vereinigungsmengen von solchen Intervallen.
Andere, gleichwertige Formulierungen:
- Die Ordnungstopologie auf ist die gröbste Topologie, in der die (offenen) Intervalle im Sinn der Topologie offen sind.
- Die (offenen) Intervalle bilden eine Basis der Ordnungstopologie.
Wichtig ist die Eigenschaft »streng« der Ordnungsrelation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle < ,} also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \le } ohne Gleichheit. Dies macht die Intervalle (in der Sprechweise der rationalen oder reellen Zahlen) zu offenen Intervallen – im Gegensatz zu den abgeschlossenen Intervallen, die mit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{x\in X \,\mid\, a\le x\le b\} \; =: \; \left[a,b\right]}
notiert werden und die Komplementärmengen von offenen Mengen sind. Bspw. ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left[a,b\right] \;\; = \;\; X \, \setminus \, \bigl( \left]-\infty,b\right[ \, \cup \, \left]a,\infty\right[ \bigr)} .
Wenn weder Minimum noch Maximum besitzt, fällt mit dem topologischen Abschluss von in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline{X} } zusammen.
Eine Ordnungstopologie erfüllt das Trennungsaxiom T2, ist also hausdorffsch.
Anwendungen
Durch die Ordnungstopologie kann man einige Eigenschaften von Ordnungen topologisch beschreiben, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,<)} ist hier immer eine streng totalgeordnete Menge:
- Eine nichtleere, abgeschlossene, beschränkte Teilmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S}
von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X}
enthält ihr Infimum und ihr Supremum, sofern sie in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X}
existieren.
Letzteres ist genau dann stets der Fall, wenn die Ordnung vollständig ist.
- Die Ordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle <} heißt diskret, wenn es ihre Ordnungstopologie ist. Ohne topologische Begriffe lässt sich eine diskrete Ordnung so charakterisieren:
- Jedes Element hat einen eindeutigen Vorgänger, es sei denn, es ist Minimum von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} .
- Jedes Element hat einen eindeutigen Nachfolger, es sei denn, es ist Maximum von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} .
- Anschaulich sind die Elemente durch die diskrete Ordnung wie an Perlenschnüren aufgereiht, beachte aber das 6. Beispiel unten.
- Eine Teilmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} von liegt dicht in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} im Sinne der Ordnungstheorie, wenn zwischen zwei Elementen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a<b } aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} stets ein Element Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s} aus mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a<s<b } liegt. Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} in sich dicht im Sinne der Ordnungstheorie, so liegt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} genau dann dicht in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} im Sinne der Ordnungstheorie, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} dicht in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} bezüglich der Ordnungstopologie ist.
- Eine diskret geordnete Menge ist (außer im Trivialfall einer einelementigen Menge) niemals dicht (in sich) geordnet und umgekehrt.
- Jede in sich dichte, strenge Totalordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,<)} lässt sich mit der Methode der Dedekindschen Schnitte in eine ordnungsvollständige Ordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\hat{X}, <)} einbetten. Im Artikel Dedekindscher Schnitt wird dies am Beispiel der rationalen Zahlen ausgeführt. Diese Konstruktion funktioniert auch in Ordnungen, deren Ordnungstopologie sich nicht metrisieren lässt.
Beispiele
Die im Folgenden genannten Eigenschaften beziehen sich immer auf die in den Mengen übliche, natürliche Ordnung:
- Die natürlichen Zahlen sind diskret geordnet. Jede natürliche Zahl hat einen Nachfolger.
- Die ganzen Zahlen sind diskret geordnet. Jede ganze Zahl hat einen Vorgänger und einen Nachfolger.
Die Ordnungstopologie ist die diskrete. - Bei den reellen Zahlen mit ihrer gewöhnlichen Anordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle <}
stimmt die Ordnungstopologie mit der gewohnten Topologie (der reellen Zahlen als metrischer Raum) überein.
Die reellen Zahlen sind ordnungsvollständig. - Die rationalen Zahlen sind nicht ordnungsvollständig, aber dicht (in sich) geordnet.
- Die rationalen Zahlen bilden eine dichte Teilmenge der Menge der reellen Zahlen.
- Die Menge der Stammbrüche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B:=\left\{ \tfrac{1}{z} \, \,\mid\, z\in\mathbb{Z}\setminus \left\{ 0 \right\} \right\}} ist diskret geordnet. Anschaulich besteht die Ordnung aus zwei Perlenschnüren: Die Ordnung der negativen Stammbrüche entspricht der Ordnung der natürlichen Zahlen, die Ordnung der positiven Stammbrüche deren Umkehrung; Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} ist also ordnungsisomorph zum lexikographisch geordneten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bigl(0\!\times\! \N\bigr) \, \cup \, \bigl(1 \!\times\! (-\N)\bigr) =: \N \, \cup_{<} \, (-\N).} Von einer der Perlenschnüre lässt sich die andere jedoch nicht durch fortgesetzte Vorgänger- oder Nachfolgerbildung erreichen.
- Fügt man zu aus dem vorigen Beispiel die Zahl 0 hinzu, dann ist die Ordnung nicht mehr diskret, denn 0 hat weder einen Vorgänger noch einen Nachfolger. Sie ist aber auch nicht dicht.
- Die Ordinalzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega+1=\mathbb{N} \cup_{<} \{\mathbb{N}\}} ist nicht diskret geordnet: Das Limeselement Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{N}=\omega} hat keinen Vorgänger, jede seiner Umgebungen enthält unendlich viele natürliche Zahlen. (Als Ordinalzahl wird die Menge der natürlichen Zahlen üblicherweise mit bezeichnet.)
- Die Ordnungstypen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega + 1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(1 - 1/\N_{>0} \right) \cup_{<} \{1\} \; = \; \left\{1 - \tfrac{1}{n} \,\mid\, n \in \N_{>0} \right\} \cup_{<} \{1\} } sind gleich. Letztere Topologie ist außerdem die von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Q} induzierte Teilraumtopologie, daher entspricht die analytische Konvergenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} \left(1 - \tfrac{1}{n}\right) = 1} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Q} der topologischen Konvergenz von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\in\omega}n = \omega} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega + 1} . Jede abzählbare Ordinalzahl kann ordnungserhaltend in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Q} eingebettet werden. Ein weiteres Beispiel dieser Art ist , das denselben Ordnungstyp wie in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Q} hat.
Andere Topologien, die mit der Ordnung zusammenhängen
Auf einer streng totalgeordneten Menge können auch die Halbgeraden
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left]a,+\infty\right[ := \{x\in X \,\mid\, a<x\} } | mit | (Typ A) | |
oder | |||
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left]-\infty,b\right[ := \{x\in X \,\mid\, x<b\} } | mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b\in X } | (Typ B) |
als Basis je einer Topologie, der Topologie der nach unten beschränkten (Typ A) bzw. der nach oben beschränkten Mengen (Typ B), zugrunde gelegt werden. Die beiden Topologien sind – für Mengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X ,} die mehr als einen Punkt enthalten – voneinander verschieden und die Ordnungstopologie ist ihre kleinste gemeinsame Verfeinerung.
Der Konvergenzbegriff in diesen Topologien ist sehr einfach: Eine Folge konvergiert in einer Topologie des Typs A oder B nur dann, wenn sie am entsprechenden Extremum stationär wird.
Einzelnachweise und Anmerkungen
- ↑ Falls die Ordnungsrelation als eine schwache Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,\le)}
gegeben sein sollte, erzeugt man daraus eine strenge (oder starke) Totalordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,<)}
durch die Setzung
- ↑ Wie üblich soll gelten:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -\infty \notin X \not\ni +\infty }
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -\infty < x < +\infty} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\in X} .
- ↑ Genau dieselben Intervalle kann man auch ohne Bezugnahme auf die unendlichen Elemente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pm\infty }
definieren:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{x\in X \,\mid\, a<x<b\}} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = \left]a,b\right[ } (beschränktes Intervall) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{x \in X \,\mid\, a < x\}} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = \left]a,\infty\right[ } (Intervall ohne rechte Schranke in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X } ) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{x \in X \,\mid\, x < b\}} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = \left] -\infty,b\right[ } (Intervall ohne linke Schranke in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X } ) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X } Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = \left] -\infty,\infty\right[ } (der ganze Raum) Die unbeschränkten Intervalle werden übrigens nur dann in der Basis benötigt, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X } auf der entsprechenden Seite ein Extremum hat; der ganze Raum sogar nur dann, wenn aus einem einzelnen Element besteht.
Gibt es aber bspw. kein Minimum, dann kann das links unbeschränkte Intervall- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{x \in X \,\mid\, x < b\} = \; \textstyle\bigcup_{a<b}\left]a,b\right[ }
als Vereinigung von Basismengen gebildet werden.
Literatur
- Boto von Querenburg: Mengentheoretische Topologie. 3. Auflage. Springer-Verlag, Berlin Heidelberg New York 2001, ISBN 978-3-540-67790-1, S. 18, doi:10.1007/978-3-642-56860-2.