Partialmarktmodell

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Partialanalyse)

Das Partialmarktmodell (auch: Partialanalyse) ist eines der grundlegendsten Modelle in den Wirtschaftswissenschaften und beschreibt einen Markt für ein einzelnes Gut.

Allgemeines

Ein Partialmarkt ist ein Markt für ein einzelnes Gut, das hinreichend homogen ist, damit es einen einzigen Preis gibt. Des Weiteren wird davon ausgegangen, dass es keine räumlichen oder zeitlichen Differenzen in den Transaktionen zwischen Anbietern und Nachfragern gibt. Des Weiteren liegt vollkommene Markttransparenz vor. Dies bedeutet, dass der Marktpreis allen Wirtschaftsakteuren bekannt ist.

Entgegen der bei Totalanalysen notwendigen Betrachtung der Wechselwirkungen sämtlicher Märkte und Produkte, wird bei der Partialanalyse nur ein Markt betrachtet. Auswirkungen einer Entscheidung auf andere Parameter werden vernachlässigt. Diese starke Vereinfachung der Wirklichkeit dient dazu, dass Entscheidungen auf einem Markt isoliert betrachtet werden können. In der Realität sinnvolle Ergebnisse können generiert werden, wenn die Elastizitäten anderer Märkte auf Veränderungen des betrachteten Marktes gering sind.

Beschreibung des Partialmarktes

Angebot und Nachfrage

Im Partialmarktmodell wird vereinfachend davon ausgegangen, dass sich der Markt eindeutig durch eine Nachfrage- und eine Angebotsfunktion darstellen lässt. Die Nachfragefunktion drückt aus, wie viele Einheiten zu einem festen Preis von den Konsumenten nachgefragt werden, die Angebotsfunktion, wie viele Einheiten zu einem festen Preis von den Produzenten angeboten werden.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D\colon\, P\to \R_{+},\; p\mapsto D(p) \quad \quad } (Nachfragefunktion)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S\colon\, P\to \R_{+},\; p\mapsto S(p) \quad \quad } (Angebotsfunktion)

Überschussnachfragefunktion

Die Differenz von Nachfrage und Angebot wird als Überschussnachfrage bezeichnet.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E\colon\, P\to \R_{+},\; p\mapsto D(p)-S(p) \quad \quad } (Angebotsfunktion)

Bedeutung des Partialmarktmodells

Beim Partialmarktmodell handelt es sich um eine hypothetische Ceteris-paribus-Betrachtung. Die Frage ist also – vorausgesetzt, der Rest der Ökonomie verändert sich nicht – wie der Preis mit der Nachfrage und dem Angebot zusammenhängt. Dabei werden grundsätzlich keine besonders starken Annahmen getätigt. Die einzigen Annahmen sind, dass Angebot und Nachfrage Funktionen sind. Dies bedeutet, dass für einen Preis eine eindeutig bestimmte nachgefragte und eine eindeutig bestimmte angebotene Menge des Gutes vorhanden ist.

Marktgleichgewicht

Der Gleichgewichtspreis

Ein Gleichgewichtspreis ist ein Preis, bei dem Angebot gleich Nachfrage ist.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p^*: E(p^*)=0}

Existenz

Für die Existenz eines Marktgleichgewichts ist nach dem Zwischenwertsatz Folgendes hinreichend, wenn die Überschussnachfrage stetig ist

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \exists p_{1},p_{2}\in P:E(p_{1})<0,E(p_{2})>0}

Eindeutigkeit

Für die Eindeutigkeit eines Marktgleichgewichts ist strikte Pseudo-Monotonie hinreichend:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \exists p_{1} \neq p_{2} : (p_{1}-p_{2})E(p_{2})\leq 0 \Rightarrow (p_{1}-p_{2})E(p_{1})< 0}

Stabilität von Marktgleichgewichten

Ein Problem des Marktgleichgewichts als theoretisches Konzept ist, dass es nicht darstellt, was passiert, wenn im Partialmarkt der Preis nicht der Gleichgewichtspreis ist. Dafür muss zum Modell noch ein dynamischer Prozess für die Preisänderung hinzugefügt werden.

Dynamisches System

Eine Bewegung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi: T \times P \to P} , wobei die Menge aller möglichen Preise und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T \subseteq \R} die Menge aller Zeitpunkte ist, heißt dynamisches System, wenn

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (ii) \quad \varphi(t_{1},\varphi(t_{2},p_{0}))=\varphi(t_{1}+t_{2},p_{0}) }

Ein häufig verwendetes Dynamisches System ist der Têtonnement-Prozess, bei dem

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{d p(t)}{d t}=E(p(t))\quad \quad ,p(0)=p_{0}}

Die Interpretation dahinter ist, dass der Preis tendenziell bei positiver Überschussnachfrage steigt und bei einem Überangebot sinkt.

Stabilität

Ein Dynamisches System konvergiert lokal asymptotisch stabil gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p^*} , wenn

Ein Dynamisches System konvergiert global asymptotisch stabil gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p^*} , wenn

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall \delta>0 \; \forall p_{0} \in P |p_{0}-p^*|<\delta \Rightarrow \lim_{t \to \infty}|p_{t}-p^*|=0 }

Rationalisierbarkeit

Nachfrage und Angebot in einem Partialmarkt heißt rationalisierbar, wenn man der Nachfragefunktion eine zugehörige Nutzenfunktion und einer Angebotsfunktion eine zugehörige Kostenfunktion zuordnen kann.

Nachfrage

Wenn eine invertierbare und integrierbare Nachfragefunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D\colon\, P\to \R,\; p\mapsto x} gegeben ist, wobei p ein Preis und x eine nachgefragte Menge auf einem Partialmarkt ist, dann gilt für die Nutzenfunktion des repräsentativen Agenten

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D^{-1}(x) = u'(x) }

wenn eine quasilineare Nutzenfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U(x) = u(x) - p x } unterstellt wird. Für die Nutzenfunktion des repräsentativen Agenten ergibt sich, da , daher

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U(x)=\int_{0} ^ {x}D^{-1}(x')dx'-D^{-1}(x)x }

Die zugehörige Präferenzenrelation ergibt sich dann mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U(x_{1})>U(x_{2}) \Leftrightarrow x_{1} \succ x_{2} }

Angebot

Wenn eine invertierbare und integrierbare Angebotsfunktion Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle S\colon \,P\to \mathbb {R} ,\;p\mapsto x} gegeben ist, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} ein Preis und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} eine angebotene Menge auf einem Partialmarkt ist, dann gilt für die Kostenfunktion einer repräsentativen Firma

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^{-1}(x) = c'(x) }

wenn eine Gewinnfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi(x) = p x -c(x) } unterstellt wird. Da Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle p=S^{-1}(x)} gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi(x) = S^{-1}(x)x - \int_{0} ^ {x}S^{-1}(x')dx' }

Andere Gleichgewichtsmodelle

Literatur

  • Andreu Mas-Colell, Michael Whinston und Jerry Green: Microeconomic Theory. Oxford University Press, Oxford 1995, ISBN 0-195-07340-1.