Arrow-Debreu-Gleichgewichtsmodell

aus Wikipedia, der freien Enzyklopädie

Das Arrow-Debreu Gleichgewichtsmodell (auch: Arrow-Debreu-McKenzie-Modell) ist ein mikroökonomisches Modell der gesamten Volkswirtschaft. Es ist nach Gérard Debreu und Kenneth Arrow sowie Lionel W. McKenzie benannt, stellt eine Weiterentwicklung des von Léon Walras entwickelten walrasianischen Gleichgewichtsmodells dar und untersucht einen gesamtwirtschaftlichen Gleichgewichtszustand.

Das Modell erweitert das allgemeine Gleichgewichtsmodell um unsichere Erwartungen und zustandsabhängige Größen und ist damit für die Finanzierungstheorie von großer Bedeutung. Es zeigt, dass es in einer Marktwirtschaft unter idealisierenden Bedingungen nicht möglich ist, jemanden besserzustellen, ohne jemand anderen schlechterzustellen. Kurz gesagt ist ein Marktgleichgewicht ein Pareto-Optimum.

Allgemeines

Inhalt

Allgemeine Gleichgewichtsmodelle betrachten Marktwirtschaften, in denen alle Konsumenten und Produzenten rational handeln. Sie beschreiben, wie Konsumenten und Produzenten unter Beachtung ihrer Budgetbeschränkungen bzw. technologischen Beschränkungen simultan Angebote und Nachfragen wählen. Im Gegensatz zu Partialmodellen, die nur Einzelmärkte analysieren, charakterisieren Allgemeine Gleichgewichtsmodelle gesamtwirtschaftliche Ressourcenallokationen, bei denen sämtliche Märkte gleichzeitig geräumt sind.

Geschichte

Der erste Versuch in der Neoklassischen Theorie, ein umfassendes Modell zur Bestimmung der relativen Preise in einer Ökonomie zu entwickeln, stammt von Léon Walras, dem Begründer der Lausanner Schule. Er wollte aus der Klassischen Nationalökonomie von Adam Smith und David Ricardo eine „exakte Wissenschaft“ machen. Daher versuchte er, die Wirtschaft mathematisch zu beschreiben. Abraham Wald und später Maurice Allais, Kenneth Arrow und Gérard Debreu beschrieben die Existenz und die Stabilität eines Allgemeinen Gleichgewichts für eine Marktwirtschaft mit Privateigentum. Arrow, Allais und Debreu erhielten für ihre Arbeiten zur Allgemeinen Gleichgewichtstheorie (AGT) den Wirtschaftsnobelpreis.

Beschreibung der Ökonomie

Bestandteile

Betrachtet sei eine Ökonomie aus n Märkten. In dieser gebe es I Konsumenten und J Unternehmen, wobei für diese beiden Gruppen entsprechend die Indexmengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{I}=\{1,\ldots,I\}} (die Menge aller Konsumenten) bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{J}=\{1,\ldots,J\}} (die Menge aller Produzenten) definiert werden. Betrachtet werden nun nacheinander Konsumenten und Produzenten, danach die anfängliche Ausstattung der Ökonomie:

  • Die Konsummöglichkeitenmenge eines Konsumenten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i\in\mathcal{I}} ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_{i}\subset\mathbb{R}^{n}_{+}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_{i}\neq\emptyset} , also die Menge aller für i möglichen Konsumbündel . Seine Präferenzen seien durch die Präferenzordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \succsim_{i}} charakterisiert. (Eine solche beinhaltet geordnete Paare Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\hat{\mathbf{x}}^{i},\tilde{\mathbf{x}}^{i})} mit , für die gilt, dass von i schwach gegenüber Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{\mathbf{x}}^{i}} präferiert wird.) Der Konsumsektor kann auf Grundlage dessen durch die Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\{ (X_{i},\succsim_{i})\right\} _{i\in\mathcal{I}}} beschrieben werden.
  • Die Produktionsmöglichkeitenmenge eines Unternehmens Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j\in\mathcal{J}} ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y_{j}\subseteq\mathbb{R}^{n}} . Sie beinhaltet alle möglichen Produktionspläne Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{y}^{j}=(y_{1}^{j},\ldots,y_{n}^{j})} . Das Vorzeichen einer jeden Komponente von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{y}^{j}} wird dabei wie folgt interpretiert:
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_{k}^{j}<0}  : Produzent j nutzt das Produkt k als Input (z. B. Arbeitsleistung, Rohstoffe)
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_{k}^{j}>0}  : Produzent j produziert das Produkt k als Output (z. B. Konsumgut)
Der Produktionssektor lässt sich demzufolge durch eine Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\{ Y_{j}\right\} _{j\in\mathcal{J}}} charakterisieren.
  • Die Anfangsausstattung der Ökonomie beschreibt, welche bzw. wie viele Ressourcen der Ökonomie zu Beginn der Betrachtung zur Verfügung stehen. Sie ist durch den Ausstattungsvektor (Ressourcenvektor) gegeben. Zudem vereinbare man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{e}^{i}=(e_{1}^{i},\ldots,e_{n}^{i})\in\mathbb{R}^{n}_{+}} als Ausstattung einer Person Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i\in\mathcal{I}} (bezüglich aller Produkte).

Gesamtökonomie

Die gesamte Ökonomie lässt sich im Arrow-Debreu-Modell infolgedessen als ein Tupel

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{\mathcal{E}}=\left[\left\{ (X_{i},\succsim_{i})\right\} _{i\in\mathcal{I}},\left\{ Y_{j}\right\} _{j\in\mathcal{J}},\mathbf{e}\right]}

beschreiben.

Eine häufig anzutreffende Spezifizierung dieser Ökonomie ist eine Ökonomie mit Privateigentum

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{\mathcal{E}}^{p}=\left[\left\{ (X_{i},\succsim_{i})\right\} _{i\in\mathcal{I}},\left\{ Y_{j}\right\} _{j\in\mathcal{J}},\left\{ \left(\mathbf{e}^{i},\mathbf{\theta}^{i}\right)\right\} _{i\in\mathcal{I}}\right]}

Hierbei handelt es sich um ein Wettbewerbssystem, in dem alle Unternehmen (und ihre Gewinne) privates Eigentum darstellen, das heißt, die Gewinne sind Bestandteil des aggregierten Konsumbudgets. Da es sich um eine Wettbewerbsökonomie handelt, werden Güter überdies dezentral auf Wettbewerbsmärkten gehandelt, wobei die Marktakteure als Preisnehmer agieren: Konsumenten maximieren ihren Nutzen, Produzenten ihre Gewinne. Aus der Privateigentumsannahme ergibt sich formal, dass sich das Budget der Konsumenten aus zwei Komponenten zusammensetzt: Zum einen aus einem Anteil Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{e}^{i}\in\mathbb{R}^{n}} an der Anfangsausstattung, zum anderen aus einem Anteil an den Gewinnen der Produzenten. Dieser Anteil betrage gerade Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{\theta}^{i}\in\mathbb{R}^{J}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta^{i}=(\theta^{i1},\ldots,\theta^{iJ})} (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta^{i4}} wäre also beispielsweise der Anteil, den Person i an den Gewinnen von Produzent 4 für sich in Anspruch nehmen kann). Entsprechend den Voraussetzungen ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{e}=\sum_{i\in\mathcal{I}}\mathbf{e}^{i}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{i\in\mathcal{I}}\mathbf{\theta}^{i}=\mathbf{1}} .

Das walrasianische Gleichgewicht

Ökonomie mit vollkommenem Wettbewerb

Eine Wettbewerbsökonomie mit Privateigentum (und vollkommenem Wettbewerb) verfügt über einen zentralen Preisvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{p}=(p_{1},\ldots,p_{n})} , der den Preis jedes Produktes angibt. Davon ausgehend kann jeder Konsument auch nur im Rahmen eines beschränkten Budgets konsumieren (Budgetrestriktion). In einem Gleichgewichtszustand muss die Budgetrestriktion unbedingt gewahrt sein.

Zudem muss im Gleichgewicht sowohl auf Produzenten- als auch auf Konsumentenseite Optimalitätsbedingungen erfüllt sein. Jeder Konsument Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i\in\mathcal{I}} muss – unter Wahrung seiner Budgetrestriktion und gegeben den Preisvektor der Ökonomie – gerade einen solchen Konsumplan wählen, für den gilt, dass er gegenüber jedem anderen möglichen Konsumplan schwach vorgezogen wird. Und jeder Produzent muss der Maxime der Gewinnmaximierung folgen, das heißt, für jeden Produzenten muss gelten, dass der gewählte Produktionsplan – gegeben die Preise in der Ökonomie – gewinnmaximierend ist. (Es wird im Arrow-Debreu-Modell also nicht davon ausgegangen, dass die Optimierungsprobleme von Konsumenten und Unternehmen stets eindeutige Lösungen haben müssen.)

Schließlich muss die gleichgewichtige Allokation zulässig sein, und zwar in folgendem Sinne: Betrachtet man eine Wettbewerbsökonomie mit Privateigentum (und vollkommenem Wettbewerb), so ist ein konkreter „Zustand“ von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{\mathcal{E}}^{p}} (mit spezifischem Konsum- und Produktionsvektoren für jeden Konsumenten bzw. Produzenten) durch einen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n(I+J)} -Allokationsvektor gegeben. Eine solche Allokation bezeichnet man als zulässig, wenn für jede Ressource gilt, dass die insgesamt konsumierte Menge gerade der Anfangsausstattung zuzüglich der insgesamt produzierten Menge entspricht, mithin also wenn

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{i\in\mathcal{I}}\mathbf{x}^{i}=\mathbf{e}+\sum_{j\in\mathcal{J}}\mathbf{y}^{j}} .

Walrasianisches Gleichgewicht

Für die Wettbewerbsökonomie mit Privateigentum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{\mathcal{E}}^{p}} ist ein Wettbewerbsgleichgewicht also zusammengefasst definiert als ein Tupel

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left[\left(\mathbf{x}^{i*}\right)_{i\in\mathcal{I}},\left(\mathbf{y}^{j*}\right)_{j\in\mathcal{J}},\mathbf{p}\right]}

mit folgenden Eigenschaften:

  1. Jede Person maximiert ihren Nutzen, gegeben die gleichgewichtigen Marktpreise und ihr Konsumbudget. Genauer: Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{X}} die Menge aller Konsumvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{x}^{i}} , die der Budgetrestriktion genügen:
    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{X}=\left\{ \mathbf{x}^{i}\left|\mathbf{p}\cdot\mathbf{x}^{i}\leq\mathbf{p}\cdot\mathbf{e}^{i}+\sum_{j=1}^{J}\theta^{ij}\cdot\mathbf{p}\cdot\mathbf{y}^{j*}\right.\right\}}
Dann ist und es gilt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{x}^{i*}\succsim_{i}\mathbf{x}^{i}} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{x}^{i}\in\mathcal{X}} .
  1. Jedes Unternehmen maximiert, gegeben die gleichgewichtigen Marktpreise, seinen Gewinn, das heißt, für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j\in\mathcal{J}} gilt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{p}\cdot\mathbf{y}^{j}\leq\mathbf{p}\cdot\mathbf{y}^{j*}} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{y}^{j}\in Y_{j}} .
  2. Die Allokation ist in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{\mathcal{E}}^{p}} zulässig.

Ein solches Gleichgewicht bezeichnet man als walrasianisches Gleichgewicht.

Eine alternative Formulierung für die Zulässigkeitsbedingung (3.) ist gebräuchlich: Offensichtlich kann man diese mittels der oben eingeführten individuellen Anfangsausstattung nämlich alternativ auch durch Überschussnachfragen ausdrücken. Man bezeichnet mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{z}\equiv\sum_{i\in\mathcal{I}}\left(\mathbf{x}^{i}-\mathbf{e}^{i}\right)}

die aggregierte Überschussnachfrage der Ökonomie. Eine Allokation ist damit zulässig genau dann, wenn

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{z}=\sum_{j\in\mathcal{J}}\mathbf{y}^{j}} ,

das heißt, wenn für jedes Gut die aggregierte Überschussnachfrage aller Konsumenten dem aggregierten Überschussangebot aller Unternehmen entspricht. Ist diese Bedingung nicht erfüllt, können die Konsum- bzw. Produktionspläne der Konsumenten und Unternehmen nicht alle gleichzeitig realisiert werden, da dann für manche Güter die aggregierte Nachfrage vom aggregierten Angebot abweicht. Beachte, dass die haushaltsspezifische Überschussnachfrage Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{x}^{i}-\mathbf{e}^{i}} positive oder negative Komponenten umfassen kann. Das Vorzeichen der k-ten Komponente dieses Vektors zeigt an, ob der betrachtete (i-te) Konsument das betreffende Produkt kauft oder verkauft: Gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^{i*}_{k}>e^{i*}_{k}} , dann will i mehr von k konsumieren als er anfänglich besitzt – und muss die Differenz daher kaufen; gilt dagegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^{i*}_{k}<e^{i*}_{k}} , will er weniger konsumieren als er anfänglich besitzt – und wird die Differenz daher verkaufen.

Eigenschaften, Implikationen und Existenz des walrasianischen Gleichgewichts

Der zentrale Punkt des Arrow-Debreu-Gleichgewichtsmodells ist die Untersuchung seines Gleichgewichts. Hierbei ist besonders die Existenz und Effizienz dieses Zustandes interessant.

Walras-Gesetz

Im Gleichgewicht einer Ökonomie mit lokal nicht gesättigten Konsumenten gilt das Walras-Gesetz in Bezug auf die gesamte Ökonomie. (Man bezeichnet eine individuelle Präferenzordnung Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \succsim _{i}} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_{i}} als lokal nicht gesättigt, wenn für beliebiges Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat{\mathbf{x}}^{i}\in X_{i}} und für jede Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon} -Umgebung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_{\epsilon}(\hat{\mathbf{x}}^{i})} um Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat{\mathbf{x}}^{i}} ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{\mathbf{x}}^{i}\in N_{\epsilon}(\hat{\mathbf{x}}^{i})} existiert, sodass Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\tilde {\mathbf {x} }}^{i}} von i strikt gegenüber Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat{\mathbf{x}}^{i}} präferiert wird, also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{\mathbf{x}}^{i}\succ_{i}\hat{\mathbf{x}}^{i}} . Vgl. der Artikel Präferenzordnung.) Das heißt, es gilt:

Dies bedeutet, dass der Wert der (über alle Konsumenten und Unternehmen) aggregierten Überschussnachfrage stets null sein muss.

Existenzbedingungen

Es gibt eine Reihe von Existenzsätzen für die Existenz eines solchen Gleichgewichtes.[1] Im Folgenden wird ein auf Arrow und Debreu (1954[2]) basierender Existenzsatz vorgestellt.

Existenz eines Gleichgewichts:[3] Betrachte eine Ökonomie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{\mathcal{E}}} im oben definierten Sinne, und seien die folgenden Anforderungen erfüllt:

(1) Für alle Konsumenten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i\in\mathcal{I}} gilt:
(a) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_{i}} ist eine kompakte und konvexe Teilmenge des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{R}^{n}_{+}} ;
(b) ist ein innerer Punkt von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_{i}} ;
(c) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \succeq_{i}} ist stetig[4] und konvex.
(2) Für alle Unternehmen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j\in\mathcal{J}} gilt:
(a) ist kompakt und konvex;
(b) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{0}\in Y_{j}} .

Dann verfügt Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \mathbf {\mathcal {E}} } über ein walrasianisches Gleichgewicht.

Bedeutung der Existenzbedingungen

Diese Bedingungen sind keineswegs alle naheliegend oder nur rein technisch. Besonders (1)(b) ist problematisch, auch wenn sie abgeschwächt werden kann; dies gilt auch für die Forderung der Kompaktheit von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_{i}} . Tendenziell erscheinen die Annahmen an die Produzenten natürlicher.

Zu bedenken gilt es, dass die obige Bedingungen nur eine hinreichende Bedingung für die Existenz eines allgemeinen Gleichgewichtes ist. Aus der Verletzung von einigen der Punkte kann also nicht auf die Nicht-Existenz geschlossen werden. Außerdem können einige der Existenzbedingungen erwähntermaßen abgeschwächt werden.

Hauptsätze der Wohlfahrtsökonomie

1. Hauptsatz der Wohlfahrtsökonomie

Wenn die individuellen Präferenzordnungen aller Konsumenten lokal nicht gesättigt sind und es ein Walras-Gleichgewicht gibt, dann ist dieses Gleichgewicht auch Pareto-effizient.

2. Hauptsatz der Wohlfahrtsökonomie

Wenn eine Allokation

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left[\left(\mathbf{x}^{i}\right)_{i\in\mathcal{I}},\left(\mathbf{y}^{j}\right)_{j\in\mathcal{J}}\right]}

Pareto-effizient ist und einige weitere Voraussetzungen erfüllt sind, dann gibt es einen Preisvektor Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \mathbf {p} \neq \mathbf {0} } und ein Transferschema so, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left[\left(\mathbf{x}^{i}\right)_{i\in\mathcal{I}},\left(\mathbf{y}^{j}\right)_{j\in\mathcal{J}},\mathbf{p}\right]} ein Walras-Gleichgewicht (mit Transfers) ist.

Eindeutigkeit und Stabilität des Gleichgewichts

Die Fragen nach Eindeutigkeit und Stabilität des Gleichgewichts sind typischerweise nicht im Arrow-Debreu-Modell untersucht worden, sondern unter der einschränkenden Annahme, dass die jeweiligen Optimierungsprobleme von Konsumenten und Unternehmen eine eindeutige Lösung haben und sich die Volkswirtschaft daher durch eine Überschussnachfragefunktion beschreiben lässt.[5] Das Sonnenschein-Mantel-Debreu-Theorem besagt dabei, dass diese Funktionen zwar über bestimmte, allgemeine Eigenschaften verfügen, ansonsten aber keine konkreten Aussagen über ihre Gestalt möglich sind. Bei Heterogenität in den Faktorausstattungen und Präferenzen ist kein eindeutiges Gleichgewicht garantiert.[6]

Andere Gleichgewichtsmodelle

Literatur

  • Kenneth J. Arrow, Frank Hahn: General Competitive Analysis. North Holland, 1971, ISBN 0-444-85497-5.
  • William D. A. Bryant: General equilibrium. Theory and evidence. World Scientific, Hackensack 2010, ISBN 978-981-281-834-8 (E-Book: ISBN 978-981-281-835-5).
  • Gerard Debreu: Theory of Value. An Axiomatic Analysis of Economic Equilibrium. Yale University Press, New Haven und London 1959.
  • Gerard Debreu: Existence of Competitive Equilibrium. In: Kenneth J. Arrow, Michael D. Intrilligator (Hrsg.): Handbook of Mathematical Economics. Band 2. North Holland, Amsterdam 1982, ISBN 978-0-444-86127-6, S. 697–743, doi:10.1016/S1573-4382(82)02010-4.
  • David M. Kreps: Microeconomic Foundations I. Choice and Competitive Markets. Princeton University Press, Princeton 2012, ISBN 978-0-691-15583-8.
  • Andreu Mas-Colell, Michael Whinston, Jerry Green: Microeconomic Theory. Oxford University Press, Oxford 1995, ISBN 0-19-507340-1.
  • James C. Moore: General equilibrium and welfare economics. An introduction. Springer, Berlin u. a. 2007, ISBN 978-3-540-31407-3, doi:10.1007/978-3-540-32223-8.

Einzelnachweise

  1. Dazu etwa Debreu 1982; ausführlich Bryant 2010, Kapitel 2.
  2. Kenneth J. Arrow, Gerard Debreu: Existence of an equilibrium for a competitive economy. In: Econometrica. 22, Nr. 3, 1954, S. 265–290, JSTOR 1907353.
  3. Vgl., auch zum Beweis, Kreps 2012, S. 342 ff.
  4. Man bezeichnet eine binäre Relation B auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X \subseteq \R^n} als stetig, wenn die Mengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{\mathbf{x}_{a}\in X\mid\mathbf{x}_{a}B\mathbf{x}_{b}\}} (obere Konturmenge) und (untere Konturmenge) für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{x}_{b}\in X} abgeschlossen bezüglich X als Teilmenge des euklidischen Raumes sind.
  5. Vgl. Arrow und Hahn 1971.
  6. Wolfram Elsner, Torsten Heinrich, Henning Schwardt: The Microeconomics of Complex Economies. Academic Press, 2015, ISBN 978-0-12-411585-9, S. 115–117.