Pell-Folge

aus Wikipedia, der freien Enzyklopädie

Die Pell-Folge ist eine mathematische Folge von positiven ganzen Zahlen, der Pell-Zahlen (engl. Pell numbers), genauso wie die Pell-Zahlen 2. Art (engl. companion Pell numbers). Ihren Namen hat sie von dem englischen Mathematiker John Pell (1611–1685).

Pell Folge/Zahlen

Die Folge ist rekursiv definiert durch:

Das bedeutet in Worten:

  • für die beiden ersten Zahlen werden die Werte Null und Eins vorgegeben
  • jede weitere Zahl berechnet man durch Verdopplung des direkten Vorgängers und anschließende Addition des Vorvorgängers.

Die ersten Zahlen der Folge lauten (wenn man mit zu zählen beginnt):

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, … (Folge A000129 in OEIS)

Die Pell-Folge lässt sich auch als Spezialfall der allgemeinen Lucas-Folge mit und interpretieren:

Silberner Schnitt

Für den Grenzwert des Verhältnisses zweier aufeinander folgender Zahlen der Pell-Folge gilt:

Diese Zahl nennt man Silberner Schnitt in Analogie zum Goldenen Schnitt der Fibonacci-Folge.

Herleitung des Zahlenwertes

Es ist folgender Grenzwert zu bestimmen:

Mit folgt:

Mit

folgt weiter: . Damit ergibt sich die quadratische Gleichung

mit den beiden Lösungen     und   .

Da von diesen beiden Werten nur der positive für den Grenzwert in Frage kommt, folgt:

Geschlossene Form der Pell-Folge

Im Abschnitt Herleitung des Zahlenwertes wurde für die Grenzwerte des Verhältnisses zweier aufeinander folgender Zahlen der Pell-Folge gezeigt:

   und   .

Seien und reelle Konstanten. Dann erfüllen die geometrischen Folgen

  und

die Rekursionsformeln

  und  
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_2(n) = 2P_2(n-1)+P_2(n-2)} .

Deren Linearkombination Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_l(n) := c_1(1+\sqrt{2})^n + c_2(1-\sqrt{2})^n} erfüllt ebenfalls die Pell-Rekursion.

Für die Pell-Folge müssen folgende Anfangswerte gelten: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(0) = 0 }    und    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(1) = 1} .

Eingesetzt in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_l(n) } ergibt sich folgendes Gleichungssystem:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_l(0) = c_1 + c_2 = 0}    und  
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_l(1) = c_1(1+\sqrt{2}) + c_2(1-\sqrt{2}) = 1}

mit den Lösungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_1 = \frac{1} { 2\sqrt{2}} }    und   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_2 = -\frac{1} { 2\sqrt{2}}}

Damit ergibt sich die geschlossene Form der Pell-Folge:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(n)=\frac{(1+\sqrt2)^n-(1-\sqrt2)^n}{2\sqrt2}.}

Erzeugende Funktion der Pell-Folge

Die erzeugende Funktion der Pell-Folge ist:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{P}(x) = \sum_{n=0}^\infty P(n)\cdot x^n = \frac{x}{1-2x-x^2}.}

Diese Potenzreihe hat den Konvergenzradius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{2}-1} .

Herleitung der Funktion

Die erzeugende Funktion der Pell-Folge hat den Konvergenzradius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{2}-1} .

Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |x| < \sqrt{2}-1 } gilt daher mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(n+2) - 2 \cdot P(n+1) - P(n) = 0 ,\ P(0) = 0 \text{ und } P(1) = 1 } :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{alignat}{5} \mathcal{P}(x) & = P(0) && + P(1)\cdot x && + P(2)\cdot x^2 && + P(3)\cdot x^3 && + P(4)\cdot x^4 + \dotsb\\ {-2x}\cdot \mathcal{P}(x) & = && -2\cdot P(0)\cdot x && - 2 \cdot P(1)\cdot x^2 && -2 \cdot P(2)\cdot x^3 && - 2 \cdot P(3)\cdot x^4 - \dotsb\\ {-x^2}\cdot \mathcal{P}(x) & = && && -P(0)\cdot x^2 && - P(1)\cdot x^3 && - P(2)\cdot x^4 - \dotsb\\ \hline (1-2x-x^2)\cdot \mathcal{P}(x) & = P(0) && + P(1)\cdot x - 2 \cdot P(0)\cdot x\\ & = x \end{alignat} }

Reihenentwicklungen

Die unendliche Summe der Kehrwerte der Nachfolger der ungeradstelligen Pell-Zahlen ist algebraisch.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{n=1}^\infty \frac{1}{P(2n-1)+1} = \frac{1}{\sqrt{2}} }

Die unendliche Summe der Kehrwerte der ungeradstelligen Pell-Zahlen ergibt folgenden elliptischen Funktionswert:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{n=1}^\infty \frac{1}{P(2n-1)} = \frac{2\sqrt{2}}{\pi}\sqrt{\lambda^*[16\,\pi^{-2}\operatorname{arsinh}(1)^2]} K\{\lambda^*[16\,\pi^{-2}\operatorname{arsinh}(1)^2]\} }

Hierbei ist λ*(x) die elliptische Lambdafunktion und K(x) ist das vollständige elliptische Integral erster Art.

Analog zur Millin-Reihe über die Fibonaccizahlen kann folgende Reihe über die Pell-Zahlen formuliert werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{n=1}^\infty \frac{1}{P(2^n)} = \lim_{z\rightarrow\infty} \sum_{n=1}^z \frac{1}{P(2^n)} = \lim_{z\rightarrow\infty} \frac{P(2^z-1)+P(2^z-2)}{P(2^z)} = 2 - \sqrt{2} }

Pell-Primzahlen

Eine Pell-Primzahl ist eine Pell-Zahl, die prim ist. Die kleinsten Pell-Primzahlen lauten:

2, 5, 29, 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701, 4125636888562548868221559797461449, 4760981394323203445293052612223893281, … (Folge A086383 in OEIS)

Für diese Pell-Primzahlen ist der Index Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(n)} der folgende:

2, 3, 5, 11, 13, 29, 41, 53, 59, 89, 97, 101, 167, 181, 191, 523, 929, 1217, 1301, 1361, 2087, 2273, 2393, 8093, 13339, 14033, 23747, 28183, 34429, 36749, 90197, … (Folge A096650 in OEIS)
Beispiel 1:
Es ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(10)=2378} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(9)=985} . Somit ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(11)=2 \cdot P(10)+P(9)=2 \cdot 2378+985=5741 \in \mathbb P} eine Primzahl. Tatsächlich taucht der Index Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=11} in obiger Liste an der 4. Stelle auf, weil er zur viertkleinsten Pell-Primzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_{11}=5741} führt.

Es gelten folgende Eigenschaften für Pell-Primzahlen:

  • Wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(n)} eine Pell-Primzahl ist, dann ist der Index Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} ebenfalls eine Primzahl (die Umkehrung stimmt nicht, das heißt, dass nicht jeder Primzahl-Index zu einer Pell-Primzahl führt).[1]

Pell Zahlen 2. Art / Companion Pell-Folge

Pell Zahlen 2. Art werden auch Pell-Lucas Zahlen genannt.

Die Folge ist rekursiv definiert durch:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q(n)= \begin{cases} 2, &\text{wenn } n=0;\\ 2, &\text{wenn } n=1;\\ 2Q(n-1)+Q(n-2) &\text{sonst.} \end{cases} }

Das bedeutet in Worten:

  • für die beiden ersten Zahlen wird der Wert Zwei vorgegeben
  • jede weitere Zahl berechnet man durch Verdopplung des direkten Vorgängers und anschließende Addition des Vorvorgängers.

Die ersten Zahlen der Folge lauten 2, 2, 6, 14, 34, 82, 198, 478, 1154, … (Folge A002203 in OEIS)

Die Companion Pell-Folge lässt sich auch als Spezialfall der allgemeinen Lucas-Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_n(P,Q)} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P=2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q=-1} interpretieren:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q(n)=V_n(2,-1)}

Weblinks

Einzelnachweise