Quadratisches Mittel

aus Wikipedia, der freien Enzyklopädie

Das quadratische Mittel (oder der quadratische Mittelwert QMW, englisch: root mean square RMS) ist derjenige Mittelwert, der berechnet ist als Quadratwurzel des Quotienten aus der Summe der Quadrate der beachteten Zahlen und ihrer Anzahl.

Die zwei Zahlen 1 und 2 haben z. B. den quadratischen Mittelwert [1] (arithmetisches Mittel = 1,5;  die größere Zahl 2 wird beim quadratischen Mittel stärker bewertet).

Wegen der Quadrierung wird das quadratische Mittel auch zweites (absolutes) Moment genannt. Das „dritte Moment“ wäre die Mittelung in der dritten Potenz (auch kubisches Mittel genannt) usw.

Berechnung

Für die Berechnung des QMW einer Zahlenreihe werden zunächst die Quadrate aller Zahlenwerte addiert und durch ihre Anzahl n dividiert. Die Quadratwurzel daraus ergibt den QMW:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{QMW}= \sqrt{\frac1n \sum_{i=1}^n{x_i^2}} = \sqrt{\frac{x_1^2 + x_2^2 + \cdots + x_n^2}n}} .[2]

Aus geometrischer Sicht ermittelt man aus der Zahlenreihe Quadrate und aus ihnen ein Quadrat durchschnittlicher Fläche bzw. mittlerer Größe (der Radikand unter der Wurzel). Die Wurzel bzw. Seitenlänge dieses Quadrates ist das quadratische Mittel der Zahlenreihe bzw. der Seitenlängen aller Quadrate.

Für fortlaufend vorhandene Größen muss über den betrachteten Bereich integriert werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{QMW}=\sqrt{\frac1{t_2-t_1} \int_{t_1}^{t_2} {f(t)^2 \, \mathrm dt}}}  ;[3]

bei periodischen Größen, beispielsweise dem sinusförmigen Wechselstrom, integriert man über eine Anzahl von Perioden.

Anwendung

In der Technik hat das quadratische Mittel große Bedeutung bei periodisch veränderlichen Größen wie dem Wechselstrom, dessen Leistungsumsatz an einem ohmschen Widerstand (Joulesche Wärme) mit dem Quadrat der Stromstärke ansteigt. Man spricht hier vom Effektivwert des Stromes. Der gleiche Zusammenhang gilt bei zeitlich veränderlichen elektrischen Spannungen.

Bei einer Wechselgröße mit Sinusform beträgt der QMW das Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1/{\sqrt 2})} -fache des Scheitelwerts, also ca. 70,7 %.

Weiß man nichts über den zeitlichen Verlauf der auftretenden Schwankungen, so sollte aus dem Zusammenhang, in dem die Mittelwertbildung vorzunehmen ist, bekannt sein, ob eher der Gleichwert (z. B. bei Elektrolyse) oder der Effektivwert (z. B. bei Licht und Wärme) aussagekräftig ist.

Siehe auch

Einzelnachweise

  1. Horst Hirscher, Anselm Lambert: Was ist ein numerischer Mittelwert. Universität des Saarlandes, 2003, S. 28, abgerufen am 25. Mai 2022.
  2. K. Steffen: Mathematik für Wirtschaftswissenschaftler. 1.5 Mittelwerte. Heinrich-Heine-Universität Düsseldorf, 2006, S. 63, abgerufen am 25. Mai 2022.
  3. R. Brigola: Ein kleines Einmaleins über Mittelwertbildungen. Quadratische Mittel. Stiftung Studium Wissenschaft Kunst, S. 9, abgerufen am 9. August 2022.