Quadratsummen-Funktion
Die Quadratsummen-Funktion (engl. sum of squares function) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_k(n)} ist eine zahlentheoretische Funktion, die angibt, auf wie viele Arten eine gegebene natürliche Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} als Summe von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} Quadraten ganzer Zahlen dargestellt werden kann, wobei alle Vertauschungen und Vorzeichenkombinationen mitgezählt werden.
Definition
n | n | r1(n) | r2(n) | r3(n) | r4(n) | r5(n) | r6(n) | r7(n) | r8(n) |
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 |
2 | 2 | 0 | 4 | 12 | 24 | 40 | 60 | 84 | 112 |
3 | 3 | 0 | 0 | 8 | 32 | 80 | 160 | 280 | 448 |
4 | 22 | 2 | 4 | 6 | 24 | 90 | 252 | 574 | 1136 |
5 | 5 | 0 | 8 | 24 | 48 | 112 | 312 | 840 | 2016 |
6 | 2‧3 | 0 | 0 | 24 | 96 | 240 | 544 | 1288 | 3136 |
7 | 7 | 0 | 0 | 0 | 64 | 320 | 960 | 2368 | 5504 |
8 | 23 | 0 | 4 | 12 | 24 | 200 | 1020 | 3444 | 9328 |
9 | 32 | 2 | 4 | 30 | 104 | 250 | 876 | 3542 | 12112 |
10 | 2‧5 | 0 | 8 | 24 | 144 | 560 | 1560 | 4424 | 14112 |
11 | 11 | 0 | 0 | 24 | 96 | 560 | 2400 | 7560 | 21312 |
12 | 22‧3 | 0 | 0 | 8 | 96 | 400 | 2080 | 9240 | 31808 |
13 | 13 | 0 | 8 | 24 | 112 | 560 | 2040 | 8456 | 35168 |
14 | 2‧7 | 0 | 0 | 48 | 192 | 800 | 3264 | 11088 | 38528 |
15 | 3‧5 | 0 | 0 | 0 | 192 | 960 | 4160 | 16576 | 56448 |
16 | 24 | 2 | 4 | 6 | 24 | 730 | 4092 | 18494 | 74864 |
17 | 17 | 0 | 8 | 48 | 144 | 480 | 3480 | 17808 | 78624 |
18 | 2‧32 | 0 | 4 | 36 | 312 | 1240 | 4380 | 19740 | 84784 |
19 | 19 | 0 | 0 | 24 | 160 | 1520 | 7200 | 27720 | 109760 |
20 | 22‧5 | 0 | 8 | 24 | 144 | 752 | 6552 | 34440 | 143136 |
Die Funktion ist für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \in \N_{\ge 0}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k \in \N_{\ge1}} definiert als[1]
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle r_{k}(n):=\sum _{\begin{array}{c}a_{1}^{2}+a_{2}^{2}+\cdots +a_{k}^{2}=n\\(a_{1},a_{2},\dots ,a_{k})\in \mathbb {Z} ^{k}\end{array}}1={\big |}\left\{(a_{1},a_{2},\dots ,a_{k})\in \mathbb {Z} ^{k}\mid a_{1}^{2}+a_{2}^{2}+\cdots +a_{k}^{2}=n\right\}{\big |},}
d. h. als Anzahl der Darstellungsmöglichkeiten von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} als Summe von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} Quadraten ganzer Zahlen mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k \geq 1} .
Beispielsweise gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_k(0) = 1}
für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} . Es ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_2(1) = 4} ,
da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1 = 0^2 + (\pm 1)^2 = (\pm 1)^2 + 0^2} mit jeweils 2 Vorzeichenkombinationen gilt, und auch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_2(2) = 4}
wegen mit 4 Vorzeichenkombinationen. Andererseits ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_2(3) = 0} ,
weil es keine Darstellung der Zahl 3 als Summe von 2 Quadraten gibt.
Aus der Definition folgt sofort die Beziehung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_{k+m}(n) = \sum_{t=0}^n r_k(t) \ r_m(n-t),}
aus der sich eine Rekursionsformel zur effizienten Berechnung ableiten lässt:
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle r_{k+1}(n)=r_{k}(n)+2\sum _{t=1}^{\sqrt {n}}r_{k}(n-t^{2}).}
Durchschnittliche Größenordnung
Es sei[2]
- .
Das ist anschaulich die Anzahl der (ganzzahligen) Gitterpunkte in einer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} -dimensionalen Kugel mit dem Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt x} und darum näherungsweise gleich dem Kugelvolumen. Genauer lässt sich rekursiv ableiten
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_k(x) = V_k x^{\frac {k} 2} + O(x^{\frac {k-1} 2} )} ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle O(.)} das Landau-Symbol ist und die Konstanten die Volumina der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} -dimensionalen Einheitskugeln sind:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_2 = \pi,\; V_3 = \frac 43 \pi,\; V_4= \frac 12 \pi^2,\; \dots}
Die durchschnittliche Größenordnung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_k(n)} ist damit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac k2 V_k x^{\tfrac k 2 -1}} , also z. B. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi} die von Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle r_{2}(x)} .
Erzeugende Funktion
Die erzeugende Funktion erhält man als Potenz der Jacobischen Thetafunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vartheta(z,q)} für den Spezialfall . Dafür gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vartheta_3(q) := \vartheta(0,q) = \sum_{n=-\infty}^\infty q^{n^2} = 1 + 2q + 2q^4 + 2q^9 + 2q^{16} + \dotsb}
Man erhält daraus
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\vartheta_3(q))^k = \sum_{n_1, n_2, \dotsc, n_k} q^{n_1^2+n_2^2+\dotsb+n_k^2} = \sum_{n=0}^\infty q^n \sum_{n_1^2+n_2^2+\dotsb+n_k^2 = n} 1 = \sum_{n=0}^\infty q^n \ r_k(n)} .
Spezielle Fälle
Einige spezielle Formeln sind z. B. (für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n > 0} ):
Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k = 2} gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_2(n) = 4\sum_{d \mid n \atop d \equiv 1 \pmod 2}(-1)^{(d-1)/2}}
Mit Hilfe der Primfaktorzerlegung , wobei die Primfaktoren der Form Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle p_{i}\equiv 1{\pmod {4}}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q_i} die Primfaktoren der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q_i \equiv 3\pmod 4} sind, ergibt sich als weitere Formel
- ,
wenn alle Exponenten gerade sind. Ist mindestens ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h_i} ungerade, dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_2(n) = 0} . Nach Definition ist auch die Anzahl der Gaußschen Zahlen mit der Norm Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} .
Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k = 3} bewies Gauß eine Formel für quadratfreie Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n > 4}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_3(n) = \begin{cases} 24 h(-n), & \text{wenn } n\equiv 3\pmod{8}, \\ 0 & \text{wenn } n\equiv 7\pmod{8}, \\ 12 h(-4n) & \text{sonst}, \end{cases}}
wobei Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle h(m)} die Klassenzahl einer ganzen Zahl bezeichnet.
Für beliebige Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n > 0} gilt nach dem Drei-Quadrate-Satz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_3(n) = 0} genau dann, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} sich in der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n = 4^a(8b+7), a \geq 0, b\geq 0} darstellen lässt.[3]
Die Formel für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k = 4} stammt von Carl Gustav Jacob Jacobi und liefert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_4(n)} als achtfache Summe aller Teiler von die nicht durch 4 teilbar sind (Satz von Jacobi):
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_4(n) = 8\sum_{d \mid n;4\nmid d}d}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_4(n)} ist auch die Anzahl aller Lipschitz-Quaternionen mit der Norm Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} .
Jacobi fand auch eine explizite Formel für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k = 8} :
Beziehung zur Sierpiński-Konstanten
Der Limes
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K := \lim_{n \to \infty} \left( \sum_{k=1}^n \frac{r_2(k)}{k} - \pi \log n\right)}
existiert und wird (nach Wacław Sierpiński) als Sierpiński-Konstante bezeichnet. Diese lässt sich durch die Kreiszahl, die Euler-Mascheroni-Konstante und die Gammafunktion ausdrücken:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K = \pi (2 \gamma + 4 \log \Gamma(\tfrac{3}{4}) - \log \pi)}
Siehe auch
- Hurwitzquaternion
- Zwei-Quadrate-Satz, Drei-Quadrate-Satz, Vier-Quadrate-Satz
- Zahlentheoretische Funktion
Weblinks
- Eric W. Weisstein: Sum of Squares Function. In: MathWorld (englisch).