Satz von Radon-Nikodým
In der Mathematik verallgemeinert der Satz von Radon-Nikodým die Ableitung einer Funktion auf Maße und signierte Maße. Er gibt darüber Auskunft, wann ein (signiertes) Maß durch das Lebesgue-Integral einer Funktion darstellbar ist, und ist sowohl für die Maß- als auch für die Wahrscheinlichkeitstheorie von zentraler Bedeutung.
Benannt ist der Satz nach dem österreichischen Mathematiker Johann Radon, der 1913 den Spezialfall bewies, und dem Polen Otton Marcin Nikodým, der 1930 den allgemeinen Fall beweisen konnte.
Vorbemerkung
Ist ein Maß auf dem Messraum und ist eine bezüglich integrierbare oder quasiintegrierbare messbare Funktion, so wird durch
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \nu (E)=\int _{E}f\,\mathrm {d} \mu } für alle Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle E\in {\mathcal {A}}} ,
ein signiertes Maß auf definiert. Ist nicht-negativ, so ist ein Maß. Ist integrierbar bezüglich , so ist endlich.
Die Funktion heißt dann Dichtefunktion von bezüglich . Ist Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle E\in {\mathcal {A}}} eine -Nullmenge, das heißt, ist , so ist auch Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \nu (E)=0} . Das (signierte) Maß ist also absolut stetig bezüglich (in Zeichen ).
Der Satz von Radon-Nikodým besagt, dass unter bestimmten Bedingungen auch die Umkehrung gilt:
Formulierung des Satzes
Sei ein σ-endliches Maß auf dem Messraum und sei ein σ-endliches signiertes Maß, das absolut stetig bezüglich ist ().
Dann besitzt eine Dichtefunktion bezüglich , das heißt, es existiert eine messbare Funktion , so dass
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \nu (E)=\int _{E}f\,\mathrm {d} \mu } für alle Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle E\in {\mathcal {A}}} .
Ist eine weitere Funktion mit dieser Eigenschaft, so stimmt sie -fast überall mit überein. Ist ein Maß, so ist nicht-negativ. Ist endlich, so ist integrierbar bezüglich .
Die Dichtefunktion wird auch als Radon-Nikodým-Dichte oder Radon-Nikodým-Ableitung von bezüglich bezeichnet und in Analogie zur Differentialrechnung als geschrieben.
Der Satz kann auf komplexe, aber nicht generell auf vektorielle Maße verallgemeinert werden. Im Fall vektorieller Maße hängt die Gültigkeit vom verwendeten Banachraum für die Werte des Maßes ab. Diejenigen Räume, für die der Satz seine Gültigkeit behält, nennt man Räume mit der Radon-Nikodym-Eigenschaft.
Eigenschaften
- Es seien , , und -endliche Maße auf demselben Messraum. Falls Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \nu \ll \lambda } und ( und sind absolut stetig bezüglich ), dann gilt
- -fast überall.
- Falls Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \nu \ll \mu \ll \lambda } ist, dann gilt
- -fast überall.
- Falls und eine -integrierbare Funktion ist, dann gilt
- Falls und ist, dann gilt
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\frac {\mathrm {d} \mu }{\mathrm {d} \nu }}=\left({\frac {\mathrm {d} \nu }{\mathrm {d} \mu }}\right)^{-1}.}
- Falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} ein endliches signiertes Maß oder ein komplexes Maß ist, dann gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\mathrm d|\nu|\over \mathrm d\mu} = \left|{\mathrm d\nu\over \mathrm d\mu}\right|.}
Spezialfall Wahrscheinlichkeitsmaße
Es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\Omega,\mathcal{F},P)} ein Wahrscheinlichkeitsraum und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q} sei ein zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P} äquivalentes Wahrscheinlichkeitsmaß, d. h. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P \ll Q} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q \ll P} . Dann existiert eine positive Zufallsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z \in L^1(P)} , so dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{\mathrm{d}Q}{\mathrm{d}P}=Z} und Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle E_{P}(Z)=1} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_P} den Erwartungswert bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P} bezeichnet. Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} eine reelle Zufallsvariable, so ist Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle X\in L^{1}(Q)} genau dann, wenn . Für den Erwartungswert bezüglich gilt in diesem Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_Q(X) = E_P(XZ)} . (Für die Notation siehe auch Lp-Raum.)
Ist ein Wahrscheinlichkeitsmaß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P} auf der reellen Geraden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R} absolut stetig bzgl. des Lebesgue-Maßes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda} , so ist die Radon-Nikodým-Dichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{\mathrm d P}{\mathrm d \lambda}} die Wahrscheinlichkeitsdichte von , im Sinne von Gleichheit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda} -fast überall. In diesem Fall nennt man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P} eine absolutstetige Wahrscheinlichkeitsverteilung; insbesondere kann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P} dann nicht diskret sein.
Weiterführende Aussagen
Der Zerlegungssatz von Lebesgue liefert eine weiterführende Aussage für den Fall, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} nicht absolut stetig bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu} ist. Er befasst sich mit der Existenz und Eindeutigkeit einer Zerlegung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} , so dass ein Teil absolutstetig bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu } ist, also eine Dichte bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu} besitzt, und ein anderer Teil singulär bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu} ist.
Ebenso gibt es Formulierungen des Satzes von Radon-Nikodým für größere Klassen von Maßräumen als die endlichen Maßräume, die sogenannten zerlegbaren Maßräume.
Mithilfe des Begriffs der Kontiguität kann eine Version des Satzes in der asymptotischen Wahrscheinlichkeitstheorie bewiesen werden. Dort ist der Satz als Le Cams drittes Lemma bekannt.
Literatur
- Jürgen Elstrodt: Maß- und Integrationstheorie. 7., korrigierte und aktualisierte Auflage. Springer, Berlin u. a. 2011, ISBN 978-3-642-17904-4.
- Dirk Werner: Funktionalanalysis. 6., korrigierte Auflage. Springer, Berlin u. a. 2007, ISBN 978-3-540-72533-6.