Rechtssystem (Mathematik)

aus Wikipedia, der freien Enzyklopädie
Datei:Koordinatensysteme L+R.svg
Achsenorientierung und Drehsinn linkshändiger und rechtshändiger Koordinatensysteme

Als Rechtssystem bzw. rechtshändiges Koordinatensystem werden in der Mathematik und Physik gewisse Systeme (mit einer festgelegten Reihenfolge) von zwei Vektoren in der Ebene bzw. drei Vektoren im Raum bezeichnet.

Rechtssystem in der Ebene

Ein Rechtssystem in der Ebene sind zwei Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{x}, \vec{y}} , bei denen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{y}} aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{x}} auf kürzestem Wege durch Drehung entgegen dem Uhrzeigersinn, d. h. im mathematisch positiven Drehsinn, hervorgeht.

Rechtssystem im Raum

Ein Rechtssystem im dreidimensionalen Raum sind drei Vektoren und , wenn vom Endpunkt des Vektors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{z}} aus gesehen die Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{x}, \vec{y}} ein Rechtssystem in der Ebene bilden.

Rechtssystem im ℝn

Ein Rechtssystem ist allgemein ein geordnetes Tupel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\vec x_1, \dotsc, \vec x_n)} von Spaltenvektoren der Dimension Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} , so dass die Determinante der Matrix mit den Spaltenvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x_1, \dotsc, \vec x_n} positiv ist.

Für und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=3} ist dies äquivalent zu obigen Definitionen.

Linkssysteme

Für Linkssysteme bzw. linkshändige Koordinatensysteme gilt jeweils das Umgekehrte. In der Ebene geht der erste Vektor durch Drehung im Uhrzeigersinn, d. h. mathematisch negativen Drehsinn auf kürzestem Weg aus dem zweiten Vektor hervor, so wie er selbst seinerseits auf kürzestem Weg durch Drehung im Uhrzeigersinn in den zweiten Vektor überführt wird.[1]

Ein Linkssystem in einem Vektorraum ist ein geordnetes Tupel von Spaltenvektoren, bei dem die dazugehörige Matrix eine negative Determinante hat. Dementsprechend ist ein Linkssystem im dreidimensionalen Raum ein geordnetes Tripel von Vektoren, für die das obige Spatprodukt negativ ist.

Regeln

Ob drei Vektoren ein Rechts- oder Linkssystem bilden, lässt sich mit Hilfe folgender Regeln bestimmen:

  • mit der Drei-Finger-Regel der rechten Hand (auch Rechte-Hand-Regel): Zeigt der abgespreizte Daumen in Richtung des ersten Vektors und der ausgestreckte Zeigefinger in Richtung des zweiten Vektors, zeigt der rechtwinklig zu Daumen und Zeigefinger abgespreizte Mittelfinger bei einem Rechtssystem in Richtung des dritten Vektors (das funktioniert auch bei zyklischer Vertauschung der Finger oder Vektoren: ).
  • mit der Schrauben- oder Korkenzieherregel: Wird der erste Vektor so gedreht, dass er dabei auf kürzestem Wege in den zweiten Vektor überführt wird, bewegt sich, sofern alle drei Vektoren ein Rechtssystem bilden, eine im gleichen Sinn gedrehte Schraube mit Rechtsgewinde in Richtung des dritten Vektors.[2]

Für 2-dimensionale Systeme kann eine der Drei-Finger-Regel analoge Regel wie folgt formuliert werden: Zeigt der Daumen der nach oben geöffneten rechten Hand in die positive Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} -Richtung, zeigen bei einem rechtshändigen System alle übrigen Finger in die positive -Richtung – tun sie es nicht, handelt es sich um ein linkshändiges System.

Beispiele

  • Die Achsen des dreidimensionalen kartesischen Koordinatensystems bilden in seiner üblichen Achsenorientierung (z. B. -Achse zum Betrachter, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} -Achse nach rechts, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} -Achse nach oben; ebenso Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} -Achse nach rechts, -Achse in die Perspektive und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} -Achse nach oben) ein Rechtssystem.
  • Das geodätische Koordinatensystem ist dagegen, dem Drehsinn beim Kompass folgend, ein Linkssystem.
  • Ein ebenfalls weitverbreitetes Linkssystem ist das der Pixelkoordinaten bei Grafikprogrammen, bei denen der Koordinatenursprung (0|0) üblicherweise in der linken oberen Bildschirmecke liegt und die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} -Koordinaten (Grafikspalten) von dort aus nach rechts, die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} -Koordinaten (Grafikzeilen) dagegen nach unten gezählt werden, die Koordinaten eines Bildpunkts also zu seiner Bildschirmdarstellung zunächst einmal stets einer entsprechenden Koordinatentransformation unterzogen werden müssen.
  • Bei der Rotation eines Körpers bilden der Radialvektor, die Tangentialgeschwindigkeit und der Drehimpuls ein Rechtssystem.
  • Bei der Auslenkung eines stromdurchflossenen Leiters in einem Magnetfeld (Leiterschaukel-Versuch) bilden die technische Stromrichtung, die Magnetfeldlinien und die Wirkungsrichtung der Lorentzkraft ein Rechtssystem.

Einzelnachweise und Anmerkungen

  1. Walter Gellert, Herbert Küstner, Manfred Hellwich, Herbert Kästner (Hrsg.): Kleine Enzyklopädie Mathematik; Leipzig 1970, S. 342–343.
  2. Fast alle praktisch verwendeten Schrauben besitzen Rechtsgewinde - solche mit Linksgewinde dagegen finden nur selten Anwendung, z. B. in Spannschlössern