Reproduktivitätseigenschaft

aus Wikipedia, der freien Enzyklopädie

Die Reproduktivitätseigenschaft einer Wahrscheinlichkeitsverteilung besagt, dass die Summe von unabhängigen Zufallsvariablen eines bestimmten Verteilungstyps wieder nach diesem Typ verteilt ist.

Reproduktiv sind etwa die Normalverteilung, die Poisson-Verteilung, die Gammaverteilung, die Chi-Quadrat-Verteilung und die Cauchy-Verteilung. Eine mit der Reproduktivität eng verwandte Eigenschaft ist die unendliche Teilbarkeit.

Beispiel

Die Zufallsvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_{1}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_{2}} seien unabhängig und normalverteilt als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1\sim \mathcal{N}(\mu_1;\sigma_1^2)\quad \text{und} \quad X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)} .

Die Zufallsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y = X_1 + X_2 } ist dann ebenfalls normalverteilt als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y\sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)} .

Allgemein gilt: Aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_{i} \sim \mathcal{N}(\mu_{i}, \sigma_{i}^2), \quad i = 1, \ldots, k} unabhängig folgt:[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum\limits_{i=1}^{k}X_{i} \sim \mathcal{N}\left(\sum\limits_{i=1}^{k}\mu_{i}, \sum\limits_{i=1}^{k}\sigma_{i}^2\right)} .

Mehrere Parameter

Wird eine Verteilung durch zwei oder mehrere Parameter beschrieben, so kann es vorkommen, dass Abgeschlossenheit nur bzgl. eines Parameters bei Festhalten der übrigen Parameter vorliegt. Sind zum Beispiel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_n, X_m } binomialverteilt mit Parametern und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p } , also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_n \sim B_{n,p}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_m \sim B_{m,p}} , so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X_n+X_m)\sim B_{n+m,p} } . Für fixiertes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p } ist also die Binomialverteilung reproduktiv bezüglich . Obiges Beispiel der Normalverteilung zeigt, dass Abgeschlossenheit bei mehreren Parametern auch ohne eine solche Einschränkung vorliegen kann.

Einzelnachweise

  1. Karl Mosler und Friedrich Schmid: Wahrscheinlichkeitsrechnung und schließende Statistik. Springer-Verlag, 2011, S. 149.