Riemannsche Zahlenkugel

aus Wikipedia, der freien Enzyklopädie
Auf der riemannschen Zahlenkugel sind die komplexen Zahlen einschließlich darstellbar.
Datei:Riemann sphere1.svg
stereographische Rückprojektionen der komplexen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} auf die Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta} der riemannschen Zahlenkugel

In der Mathematik ist die riemannsche Zahlenkugel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat{\Complex}= \mathbb{C}\cup\{ \infty\} } die riemannsche Fläche, die sich aus der Hinzunahme eines Punktes in der Unendlichkeit zu der komplexen Ebene ergibt. Sie geht zurück auf Bernhard Riemann.

Weiter wird auf der riemannschen Zahlenkugel wie folgt eine Topologie definiert: Offene Mengen sind einerseits die offenen Mengen in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{C}} und andererseits die bezüglich gebildeten Komplemente von kompakten Teilmengen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{C}} . Der so definierte topologische Raum stellt eine Kompaktifizierung der komplexen Ebene dar. Topologisch ist sie äquivalent zur Einheitssphäre Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^2} . Mit der chordalen Metrik wird die Zahlenkugel zu einem metrischen Raum. Diese Metrik induziert die gleiche Topologie, die durch die Einpunktkompaktifizierung auf die Zahlenkugel induziert wird.

Die komplexe Struktur der riemannschen Zahlenkugel wird durch zwei Karten gegeben. Die erste ist auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb C} definiert und ist die Identität. Die zweite ist auf der Umgebung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [\mathbb C \cup \{\infty\}] \setminus \{0\}} des unendlich fernen Punkts definiert durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z \mapsto \begin{cases} \frac 1z, & \text{falls } z \in \mathbb C,\\ 0, & \text{falls }z = \infty. \end{cases}}

Anschaulich handelt es sich um eine Kugel vom Radius 1, deren Nordpol auf (0,0,1) liegt (man darf die Kugel beliebig wählen, solange ihr Nordpol (0,0,1) ist). Dem unendlich fernen Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \infty} wird dieser Nordpol Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} der Kugel zugeordnet und jedem Punkt der komplexen Zahlenebene der von verschiedene Schnittpunkt der Kugeloberfläche mit der Geraden durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle PU} (stereografische Projektion).

Die Automorphismen, also die biholomorphen Abbildungen der riemannschen Zahlenkugel auf sich selbst, bilden die Gruppe der Möbiustransformationen.

Siehe auch

Weblinks