Riesz-Raum
Ein Riesz-Raum ist ein Vektorraum mit einer Verbandsstruktur, die so beschaffen ist, dass sich die lineare und die Verbandsstruktur vertragen. Im Jahr 1928 wurde dieser Raum von Frigyes Riesz definiert[1] und trägt deshalb heute seinen Namen.
Definition
Sei ein -Vektorraum und eine halbgeordnete Menge.
Dann heißt ein Riesz-Raum wenn folgende Axiome erfüllt sind:
- Für alle gilt: .
- Für alle gilt: und .
- ist ein Verband.
Anmerkungen
- 1. und 2. bedeuten ist ein geordneter Vektorraum.
- Bei der Formulierung von 2. ist zu beachten, dass sich sowohl auf , als auch auf bezieht, aus dem Zusammenhang ist meistens klar, welche Ordnungsrelation gemeint ist, so dass üblicherweise auf zusätzliche Indizes verzichtet wird.
- 2. lässt sich auch durch die schwächere Forderung und ersetzen.
- Bezeichnen die Verbandsoperationen, so ist es Konvention, dass stärker binden, als (Klammerregel).
Erste Eigenschaften
Für und gelten folgende Rechenregeln:
- und
- und
- und
- Sei für .
- Dann gilt und .
- und
- und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (f\land g)\lor h = (f\lor h) \land (g \lor h)}
- Dies bedeutet jeder Riesz-Raum ist ein distributiver Verband.
Beispiele
- Die reellen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R} mit der üblichen Anordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \leq} bilden einen Riesz-Raum.
- Der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^n} mit komponentenweiser Anordnung bildet einen Riesz-Raum.
- Die Menge der reellen Zahlenfolgen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^\N} mit komponentenweiser Anordnung bildet einen Riesz-Raum.
- Die Menge der reellen Nullfolgen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_0} mit komponentenweiser Anordnung bildet einen Riesz-Raum.
- Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1\leq p \le \infty} ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_p} mit komponentenweiser Anordnung ein Riesz-Raum.
- Die Menge der beschränkten reellen Folgen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_\infty} mit komponentenweiser Anordnung bildet einen Riesz-Raum.
- Die Menge der stetigen Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{C}[a,b]} auf einem Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b]} bildet mit punktweiser Anordnung einen Riesz-Raum.
- Die Menge der stetig differenzierbaren Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{C}^1[a,b]} auf einem Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b] } bildet einen geordneten Vektorraum mit der punktweisen Anordnung, aber keinen Riesz-Raum.
Integrationstheorie
Riesz-Räume bieten Voraussetzungen für eine abstrakte Maß- und Integrationstheorie. Die zentrale Aussage in diesem Zusammenhang ist der Spektralsatz von Freudenthal. Dieser Satz garantiert für Riesz-Räume auf abstrakte Weise die Approximationseigenschaft von Funktionen durch Treppenfunktionen. Der Satz von Radon-Nikodým und die Poissonsche Summenformel für beschränkte harmonische Funktionen auf der offenen Kreisscheibe sind Spezialfälle des Spektralsatzes von Freudenthal. Dieser Spektralsatz war einer der Ausgangspunkte für die Theorie der Riesz-Räume.
Einzelnachweise
- ↑ Riesz, Frigyes: Sur la décomposition des opérations fonctionelles linéaires, Atti congress. internaz. mathematici (Bologna, 1928), 3, Zanichelli (1930) pp. 143–148
Literatur
- Luxemburg, W.A.J. & Zaanen, A.C.: "Riesz spaces", North-Holland, 1971, ISBN 978-0444866264
- V. I. Sobolev: Riesz space. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 978-1-55608-010-4 (englisch, online).