Satz über rationale Nullstellen

aus Wikipedia, der freien Enzyklopädie

Der Satz über rationale Nullstellen (auch rationaler Nullstellentest oder Lemma von Gauß) ist eine Aussage über die rationalen Nullstellen ganzzahliger Polynome. Sie beinhaltet ein notwendiges Kriterium für die Existenz einer rationalen Nullstelle und liefert dabei eine endliche Menge rationaler Zahlen, in der alle rationalen Nullstellen enthalten sein müssen.

Aussage

Für jede rationale Nullstelle eines ganzzahligen Polynoms gilt, dass der Zähler ihrer gekürzten Darstellung das Absolutglied und der Nenner den Leitkoeffizienten des Polynoms teilt.

Seien also mit ein Polynom vom Grad und (wobei teilerfremd sind) eine rationale Nullstelle von , dann ist durch teilbar und durch teilbar.

Anmerkungen

Wenn der Leitkoeffizient des Polynoms den Betrag 1 besitzt, dann ist jede rationale Nullstelle eine ganze Zahl, die das Absolutglied teilt.[Note 1]

Der Satz lässt sich auch verwenden, um die rationalen Nullstellen rationaler Polynome zu berechnen. Denn wenn man ein rationales Polynom mit einem gemeinsamen Vielfachen der Nenner seiner Koeffizienten multipliziert, so erhält man ein ganzzahliges Polynom mit den gleichen Nullstellen, zu deren Bestimmung man nun den rationalen Nullstellentest anwenden kann.

Der Satz über rationale Nullstellen ergibt sich auch als Korollar zu einer auf Gauß zurückgehenden allgemeineren Aussage über Polynome über dem Quotientenkörper eines faktoriellen Ringes (siehe Lemma von Gauß).

Dieses Korollar besagt, dass sich jede Nullstelle im faktoriellen Ring eines Polynoms mit Koeffizienten in als Bruch in darstellen lässt, sodass der Zähler ein Teiler des Absolutgliedes und der Nenner ein Teiler des Leitkoeffizienten ist.

Beispiele

  1. Aus dem rationalen Polynom erhält man durch Multiplikation mit 30 das ganzzahlige Polynom . Dessen rationale Nullstellen müssen dann in der Menge enthalten sein. Überprüft man nun alle diese Kandidaten durch Einsetzen in oder , so erhält man als Nullstellen , 1 und . Da als Polynom vom Grad 3 maximal drei paarweise verschiedene Nullstellen besitzen kann, existieren in diesem Fall auch keine weiteren irrationalen Nullstellen.
  2. Das Polynom besitzt keine rationale Nullstelle, da 1 und −1 die einzigen Teiler des Absolutglieds und des Leitkoeffizienten sind und und ist.
  3. Das Polynom besitzt ganzzahlige Koeffizienten. Die Überprüfung für die Teiler des konstanten Gliedes ergibt sich die Nullstelle .
    Weil jede ganze Zahl auch eine gaußsche Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a+ b \cdot \mathrm i } ist, lassen sich die Koeffizienten als gaußsche Zahlen interpretieren.
    Wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2 = (1+\mathrm i)(1-\mathrm i) } erhalten wir für die Teiler Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pm (1+\mathrm i), \pm (1-\mathrm i) } des konstanten Gliedes die komplexen Nullstellen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1+\mathrm i) } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1-\mathrm i)~.}

Literatur

  • Kurt Meyberg, Peter Vachenauer: Höhere Mathematik 1. Springer, 6. Auflage 2006, ISBN 3-540-41850-4, S. 64 (Auszug in der Google-Buchsuche)
  • Rolf Walter: Einführung in die Analysis 1. Walter de Gruyter 2007, ISBN 978-3-11-019539-2, S. 110–111, 362 (Auszug in der Google-Buchsuche)
  • Charles D. Miller, Margaret L. Lial, David I. Schneider: Fundamentals of College Algebra. Scott & Foresman/Little & Brown Higher Education, 3. überarbeitete Auflage 1990, ISBN 0-673-38638-4, S. 216–221
  • Phillip S. Jones, Jack D. Bedient: The historical roots of elementary mathematics. Dover Courier Publications, 1998, ISBN 0-486-25563-8, S. 116–117 (Auszug in der Google-Buchsuche)

Weblinks

Fußnote(n)

  1. Ist aber Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mid a_n\!\!\mid \; \ne 1,} dann hat das Polynom nach der Normierung (Division durch den Leitkoeffizienten) rationale Koeffizienten. Die nicht verschwindenden unter ihnen lassen sich in eindeutiger Weise in ein Produkt   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle a_i =: \prod_{p\in\mathbb P} p^{k_{i,p} }}   von Primfaktoren mit ganzzahligen (auch negativen) Exponenten   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_{i,p}\in\Z}zerlegen. Nun lässt sich ein   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q\in \Q^\times} so finden, dass nach einer linearen Transformation   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle x = q \cdot y}   im transformierten und normierten Polynom
    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f^{\star}(y) = f(q\,y)\;q^{-n} = y^n +a^{\star}_{n-1}y^{n-1} + \dotsb + a^{\star}_1 y + a^{\star}_0}
    alle Koeffizienten   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle a^{\star}_i := a_i \cdot q^{i-n}}   ganzzahlig sind. Man nehme nur   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle q := \prod_{p\in P} p^{r_p}}   mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P \subset \mathbb P} als der endlichen Menge der in den nicht-verschwindenden Koeffizienten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle a_i = \prod_{p\in P} p^{k_{i,p} }} vorkommenden Primfaktoren und
    Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_p := \Big\lfloor\min_{\,i<n \,\wedge\, a_i \ne \;\! 0} \tfrac{k_{i,p}}{n-i}\Big\rfloor}         (Gaußklammer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lfloor \, \rfloor} ).
    Im genannten Beispiel   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x)=\tfrac{1}{5}x^3-\tfrac{7}{30}x^2+\tfrac{1}{30},}   normiert:   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^3-\tfrac{7}{6}x^2+\tfrac{1}{6},}   erhält man auf diese Weise   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle q = 2^{-1}3^{-1}7^{\,0} = \frac16}   und das ganzzahlige Polynom   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f^{\star}(y)=y^3-7y^2+36}   (welches Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -\tfrac13/q=-2,\;1/q=6,\;\tfrac12/q=3} als Nullstellen hat).