In der Geometrie stellt der Satz von Toponogow den Zusammenhang zwischen Riemannscher Geometrie und synthetischer metrischer Geometrie her. Anschaulich besagt er, dass in einer Mannigfaltigkeit mit nach oben beschränkter Krümmung Dreiecke nicht dicker sind als im Vergleichsraum konstanter Krümmung.
Er wurde 1958 von Wiktor Andrejewitsch Toponogow bewiesen.
Vergleichsräume
Zu jeder Zahl und jedem gibt es eine eindeutige einfach zusammenhängende -dimensionale Riemannsche Mannigfaltigkeit der Schnittkrümmung konstant . Für ist dies die Sphäre vom Radius , für der euklidische Raum und für der mit dem Faktor skalierte hyperbolische Raum.
Vergleichsdreieck
Ein Vergleichsdreieck in
. Aus
folgt
.
Ein geodätisches Dreieck in einer Riemannschen Mannigfaltigkeit ist ein Dreieck mit Ecken , dessen drei Seiten minimierende Geodäten sind.
Sei eine obere Schranke für die Schnittkrümmungen in , also . Dann gibt es zu jedem geodätischen Dreieck mit Seitenlängen (insbesondere zu jedem geodätischen Dreieck falls ) ein Vergleichsdreieck in mit
- .
Dieses Dreieck ist bis auf Kongruenz eindeutig, wenn entweder oder und alle Seitenlängen kleiner als sind.
Man hat dann eine Vergleichsabbildung
- ,
die (zum Beispiel) jedem Punkt auf der Seite den entsprechenden Punkt auf der Seite (d. h. den eindeutigen Punkt mit ) zuordnet, analog für die beiden anderen Seiten.
Satz von Toponogow
Untere Krümmungsschranken
Es sei eine Riemannsche Mannigfaltigkeit der Schnittkrümmung für eine Zahl . Sei
ein Vergleichsdreieck zu einem geodätischen Dreieck
- .
Dann gilt
für alle .
Obere Krümmungsschranken
Ein entsprechender Satz gilt für obere Krümmungsschranken, wobei man hier weitere Voraussetzungen benötigt.
Sei eine Riemannsche Mannigfaltigkeit der Schnittkrümmung . Falls sei einfach zusammenhängend, und falls habe das geodätische Dreieck
Seitenlängen höchstens .
Dann gilt für das Vergleichsdreieck
für alle .
Folgerungen
Aus dem Satz von Toponogow folgt, dass Hadamard-Mannigfaltigkeiten (einfach zusammenhängende Mannigfaltigkeiten nichtpositiver Schnittkrümmung) CAT(0)-Räume sind und alle dementsprechenden Eigenschaften haben: sie sind zusammenziehbar, je zwei Punkte lassen sich durch eine eindeutige Geodäte verbinden und für Geodäten ist die Funktion konvex.
Literatur
- Chavel, Isaac (2006), Riemannian Geometry; A Modern Introduction (second ed.), Cambridge University Press
- Berger, Marcel (2004), A Panoramic View of Riemannian Geometry, Springer-Verlag, ISBN 3-540-65317-1
- Cheeger, Jeff; Ebin, David G. (2008), Comparison theorems in Riemannian geometry, AMS Chelsea Publishing, Providence, RI, ISBN 978-0-8218-4417-5
Weblinks