Lemniskate

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Schleifenlinie)

Eine Lemniskate (von griechisch λημνίσκος lēmnískos ‚Schleife‘) ist eine schleifenförmige geometrische Kurve in der Form einer liegenden Acht. Meist ist mit „Lemniskate“ die Lemniskate von Bernoulli gemeint.

Lemniskate von Bernoulli

Lemniskate von Bernoulli

Die Lemniskate von Bernoulli (nach Jakob I Bernoulli) ist eine algebraische Kurve vom Grad 4, sie hat die Gleichung

mit einem Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\in\R} , der den Abstand der Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_2} vom Ursprung bezeichnet. Sie stellt die Ortskurve aller Punkte mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P F_1 * P F_2=a^2} dar. Ihre Schnittpunkte mit der x-Achse liegen bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pm\sqrt{2}a} sowie im Ursprung.

In Polarkoordinaten wird sie durch die Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r^2 = 2a^2 \cos 2\phi}

beschrieben. Sie ist ein Spezialfall der Cassinischen Kurve, die allgemeiner durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P F_1 * P F_2=c^2} mit definiert ist. Die Lemniskate entsteht für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c=a} .

Lemniskate von Booth

Lemniskate von Booth

Eine Lemniskate von Booth (nach James Booth) ist eine algebraische Kurve vom Grad 4, sie hat die Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x^2+y^2)^2=cx^2+dy^2}

mit .[1]

Für erhält man eine Lemniskate von Bernoulli.

Sie ist ein Sonderfall der Hippopede des Proklos (o. B. d. A. gilt und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c > d} ):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x^2+y^2)^2=cx^2+dy^2}

für den Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d < 0} . Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d >0} hat man ovalförmige geschlossene Kurven, weshalb sie in diesem Fall Ovale von Booth heißen. Der Name Hippopede kommt aus dem Griechischen und hat seinen Ursprung darin, dass sie an eine Fußfessel für Pferde erinnern. Sie sind Sonderfälle der Spiralen des Perseus, die sich als Parallelschnitte durch einen Torus ergeben, wobei die Ebenen senkrecht auf der Achse in der Ebene des Torus stehen. Die Lemniskate ergibt sich, wenn die Ebene gerade den inneren Ring im Torus berührt.

Lemniskate von Gerono

[[Hilfe:Cache|Fehler beim Thumbnail-Erstellen]]:
Lemniskate von Gerono: Lösungsmenge von x4−x2+y2=0[2]

Die nach Camille-Christophe Gerono benannte Lemniskate von Gerono ist eine algebraische Kurve vom Grad 4 und Geschlecht 0, sie hat die Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^4-x^2+y^2 = 0.}

Als Kurve vom Geschlecht 0 kann sie durch rationale Funktionen parametrisiert werden, beispielsweise durch:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x = \frac{t^2-1}{t^2+1}}

Eine einfachere Parametrisierung ist die Parametrisierung als Lissajous-Figur:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x = \cos \varphi}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y = \sin\varphi\,\cos\varphi = \sin(2\varphi)/2}

Lawrence[3] gibt die etwas allgemeinere Gleichung an:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z^4=a^2 \cdot (z^2-w^2)}

Diese hat die Parameterdarstellung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z=a \cos (t)}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w=a \sin (t) \cdot \cos (t)}

mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -\pi \leq t \leq \pi} .

Sie wird auch als Acht-Knoten (Eight knot) bezeichnet.

Die Kurve war schon Grégoire de Saint-Vincent (Opus geometricum quadraturae circuli et sectionum coni, 1647, als parabolis virtualis), Christiaan Huygens (Brief an Gottfried Wilhelm Leibniz 16. März 1691, mit der Bezeichnung Lemniskate) und Gabriel Cramer (1750, der sie Doppelsack nannte) bekannt.[4] Jules Antoine Lissajous behandelt sie, parametrisiert durch trigonometrische Funktionen, 1857. Nach Gerono benannt wurde die Kurve Ende des 19. Jahrhunderts (zum Beispiel Gabriel-Marie, Exercices de géométrie descriptive, 1900).

Literatur

  • J. D. Lawrence: A Catalog of Special Plane Curves. Dover 1972. ISBN 0-486-60288-5.

Weblinks

Commons: Lemniskate – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Lemniskate – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Französische Webseite zur Lemniskate von Booth
  2. Achtkurve.
  3. Lawrence: A catalog of special plane curves. Dover 1972, S. 124.
  4. Diskussion in mathoverflow