Separationsansatz
Der Separationsansatz dient der Lösung partieller Differentialgleichungen mit mehreren Variablen. Der Produktansatz ist ein Spezialfall.
Allgemeines
Man nimmt an, dass sich die Lösung durch eine Trennungsfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi(a,b)} auf folgende Weise trennen lässt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(t,x) = \varphi(X(x),T(t)),}
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T} geeignete Funktionen sind.
Produktansatz
Beim Produktansatz wählt man als Trennungsfunktion , so dass sich die Lösung als ein Produkt der Form
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle u(t,x)=X(x)T(t)}
darstellen lässt. Durch Ableiten und Einsetzen der separierten Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T} in die Ausgangsfunktion erhält man einen Ausdruck
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi(x, X, X',X'') = \lambda = \Psi(t, T, T', T'') }
Diese Gleichung lässt sich in zwei gewöhnliche Differentialgleichungen überführen, die mit Hilfe der Randbedingungen lösbar sind. Die gefundene Lösung muss nicht die einzige Lösung der Ausgangsfunktion sein.
Beispiel
Zu lösen sei die eindimensionale Wellengleichung
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\frac {\partial ^{2}y(x,t)}{\partial t^{2}}}=c^{2}{\frac {\partial ^{2}y(x,t)}{\partial x^{2}}}} .
Der Separationsansatz mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y(x,t)=f(x)g(t)} :
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\partial^{2}f(x)g(t)}{\partial t^{2}} = c^{2} \frac{\partial^{2}f(x)g(t)}{\partial x^{2}}}
führt auf
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x) \frac{d^{2} g(t)}{d t^{2}} =c^{2} \frac{d^{2} f(x)}{d x^{2}} g(t)}
Nun folgt die „Separation der Variablen“ mit Division durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x)g(t)} mit der Annahme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y(x,t)\neq 0} im Inneren der Fläche.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{1}{g(t)} \frac{d^{2}g(t)}{dt^{2}} = c^{2} \frac{1}{f(x)} \frac{d^{2} f(x)}{d x^{2}} }
Vereinfachung der Notation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f''(x) = \frac{d^{2} f(x)}{d x^{2}}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g''(t) = \frac{d^{2}g(t)}{dt^{2}}} ergibt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{g''(t)}{g(t)} = c^{2} \frac{f''(x)}{f(x)}}
Die Gleichung kann nur erfüllt sein, wenn beide Seiten der Gleichung konstant sind, da sie von verschiedenen Variablen abhängen. Also
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{g''(t)}{g(t)} = c^{2} \frac{f''(x)}{f(x)} = \lambda }
Dies führt auf die folgenden gewöhnlichen Differentialgleichungen zweiter Ordnung
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f''(x)={\frac {\lambda }{c^{2}}}f(x)}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g''(t)= \lambda g(t)}
Die nun lösbar sind in Abhängigkeit vom Parameter und den Randbedingungen, das Einsetzen der einzelnen Lösungen in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y(x,t)} ergibt die Lösung der partiellen Differentialgleichung.
Literatur
- Lawrence C. Evans: Partial Differential Equations. Reprinted with corrections. American Mathematical Society, Providence RI 2008, ISBN 978-0-8218-0772-9 (Graduate studies in mathematics 19).