Stöchiometrische Matrix

aus Wikipedia, der freien Enzyklopädie

Die stöchiometrische Matrix ist eine Matrix, welche die Stöchiometrie eines Reaktionsnetzwerkes in kompakter Form repräsentiert.

Sie wird meist mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} abgekürzt. In der Regel entsprechen die Spalten von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} den Reaktionen des Systems während die Zeilen den chemischen Spezies entsprechen. Spezies einer Reaktion, welche in Summe konsumiert werden, erhalten einen Eintrag mit negativen Vorzeichen und Spezies, welche in Summe produziert werden, erhalten einen positiven Eintrag an der Position von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} welche der gegebenen Reaktion und Spezies entspricht. Die Änderung der Spezies nach der Zeit ist dann gegeben durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \text{d}c/\text{d}t = Nv} wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v} den Vektor der Reaktionsraten (auch "Flussvektor" genannt) repräsentiert. In einem stationären Zustand gilt demnach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Nv = \mathbf{0}} , d. h. das System befindet sich in einem Fließgleichgewicht.

Die stöchiometrische Matrix lässt Rückschlüsse auf die Reaktionsraten der stationären Zustände zu. Im stationären Zustand muss dann mindestens gelten, d. h. die Menge aller solcher Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v} liegen im Nullraum von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} . Diese Bedingung ist unabhängig von der Kinetik, welcher das gegebene chemische System zugrunde liegt.

Der Rang der stöchiometrischen Matrix gibt die Zahl linear unabhängiger Reaktionen an.

Beispiel

Die vier Reaktionen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{crcl} R_1 := & \text{A} & \rightarrow & \text{B},\\ R_2 := & 4 \text{C} + 2 \text{B} & \rightarrow & 5 \text{C} + \text{B},\\ R_3 := & \text{C} & \rightarrow & \text{D},\\ R_4 := & \text{D} & \rightarrow & \text{A}, \end{array} }

lassen sich wie folgt als Matrix kodieren:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N = \left[\begin{array}{rrrr} -1 & 0 & 0 & 1\\ 1 &-1 & 0 & 0\\ 0 & 1 &-1 & 0\\ 0 & 0 & 1 &-1 \end{array}\right], }

wobei die Spalten der Reihe nach den Reaktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_1, R_2, R_3, R_4} und die Zeilen den Spezies Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \text{A}, \text{B}, \text{C}, \text{D}} entsprechen. Reaktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_1} konsumiert eine Einheit von Spezies und produziert eine Einheit von Spezies (erste Spalte). Gleichfalls wird in Reaktion netto eine Einheit von Spezies produziert während netto eine Einheit von Spezies konsumiert wird (zweite Spalte). Ist im Beispiel , dann ergibt sich und das System befindet sich in einem stationären Zustand.

Wie man an diesem Beispiel sieht kann das originale chemische System nicht allein durch Kenntnis der stöchiometrischen Matrix rekonstruiert werden. Für Reaktion existieren unendliche viele Möglichkeiten, welche die gleiche Spalte in erzeugen:

Demnach enthält die stöchiometrische Matrix weniger Information als der ursprüngliche Satz an Reaktionen.

Weitere Eigenschaften

Seien die Menge aller reellen Zahlen größer Null und die Menge aller reellen Zahlen größer oder gleich Null[1]. Weiterhin sei die Anzahl der Reaktionen im gegebenen chemischen System. Die folgenden Mengen an Vektoren repräsentieren stationäre Zustände chemischer Systeme mit unterschiedlichen Randbedingungen[2]:

  • nur reversiblen Reaktionen, d. h. Reaktionen welche in Vorwärts- und Rückwärtsrichtung ablaufen können: ;
  • nur irreversiblen Reaktionen, d. h. Reaktionen welche nur in Vorwärtsrichtung ablaufen können: ;
  • eine Mischung aus reversiblen und irreversiblen Reaktionen: , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Irr} die Menge der Indices der irreversiblen Reaktionen bezeichnet.

Anwendung

Die stöchiometrische Matrix ist ein zentrales Werkzeug der Systembiologie. Sie ermöglicht eine systematische Analyse der Flussvektoren von stationären Zuständen eines chemischen oder biologischen Systems. Im Allgemeinen ist hierbei der Größe des zu analysierenden Systems fast keine Grenze gesetzt da ihre Verwendung nur Methoden aus der linearen Algebra erfordert. Methoden welche auf die stöchiometrische Matrix zurückgreifen sind z. B.: FBA (Flux Balance Analysis)[3], FCA (Flux Coupling Analysis)[4], FVA (Flux Variability Analysis)[5], das Konzept der EFMs (Elementary Flux Modes)[6][7] und ähnliche Methoden wie Extreme Currents[7][8] und Extreme Pathways[7][9], DFBA (Dynamic FBA)[10] und CRNT (Chemical Reaction Network Theory)[1][11][12][13].

Einzelnachweise

  1. a b J. Gunawardena: Chemical reaction network theory for in-silico biologists. 2003
  2. J. Gagneur and S. Klamt: Computation of elementary modes: a unifying framework and the new binary approach. BMC Bioinformatics 2004
  3. J. D. Orth and I. Thiele and B. O. Palsson: What is flux balance analysis? Nat Biotechnol 2010
  4. A. P. Burgard and E. V. Nikolaev and C. H. Schilling and C. D. Maranas: Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res 2004
  5. R. Mahadevan and C. Schilling: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metabolic engineering 2003
  6. S. Schuster and D. A. Fell and T. Dandekar: A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 2000
  7. a b c A. Larhlimi and A. Bockmayr: On inner and outer descriptions of the steady-state flux cone of a metabolic network. Computational Methods in Systems Biology 2008
  8. B. L. Clarke: Stoichiometric network analysis. Cell Biochem Biophys 1988
  9. C. H. Schilling and D. Letscher and B. O. Palsson: Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 2000
  10. R. Mahadevan and J. S. Edwards and F. J. Doyle: Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 2002
  11. F. Horn and R. Jackson: General mass action kinetics. Arch Rational Mech Anal 1972
  12. M. Feinberg: Lectures on chemical reaction networks. 1979
  13. M. Feinberg: The existence and uniqueness of steady states for a class of chemical reaction networks. Arch Rational Mech Anal 1995

Weblinks