Reaktionsenthalpie

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Standardreaktionsenthalpie)

Die Reaktionsenthalpie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta H_{\mathrm{R}}} gibt die Änderung der Enthalpie im Verlauf einer Reaktion an, also den Energieumsatz einer bei konstantem Druck durchgeführten Reaktion. Nach dem Hess’schen Wärmesatz ist es egal, auf welchem Weg die Reaktion stattfindet oder in welcher Form (Wärme, Arbeit) Energie während der Reaktion aufgenommen oder abgegeben wird. Die Reaktionsenthalpie ist immer die Differenz der Bildungsenthalpien der Produkte und der Reaktanten:

Da Stoffe je nach Temperatur und Druck verschiedene Energien haben (zum Verständnis: Ein Gas hat unter hohem Druck mehr Energie gespeichert als unter niedrigem Druck), können Energiebilanzen verschiedener Reaktionen nur dann direkt miteinander verglichen werden, wenn man sich auf gleiche Außenbedingungen bezieht. Dazu verwendet man meist Standardbedingungen, seltener Normalbedingungen. Die Reaktionsenthalpie unter Standardbedingungen heißt Standardreaktionsenthalpie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta H^{0}_\mathrm{R} } .

In der Chemie wird meistens die molare Reaktionsenthalpie verwendet, bei der die Reaktionsenthalpie auf die Stoffmengen der zugrundegelegten Reaktionsgleichung (vgl. Umsatzvariable und Formelumsatz) bezogen wird. Die Einheit der molaren Reaktionsenthalpie ist dementsprechend Joule pro Mol Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bigl(\mathrm{\tfrac{J}{mol}} \bigr)} . Bildungsenthalpien von organischen Substanzen können sehr gut mit der Benson-Methode berechnet werden.

Als Reaktionsenergie wird der Energieumsatz bezeichnet, wenn die Reaktion bei konstantem Volumen abläuft. Der Unterschied zur Reaktionsenthalpie entspricht der Arbeit, die bei konstantem Druck mit der Volumenänderung verbunden ist.

Vorzeichen

Negativ: exotherm

exotherme Reaktion;
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta E_i} in der Abbildung entspricht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta H_\mathrm{R}} im Text

Da die Energiebilanz für das System angegeben wird, ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta H_\mathrm{R}} negativ, wenn die Produkte energetisch tiefer als die Edukte liegen und somit insgesamt Energie abgegeben wird:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \Delta H_\mathrm{R} & < 0\\ \Leftrightarrow H_\mathrm{Produkte} & < H_\mathrm{Edukte} \end{align}}

Wandelt man die freiwerdende Energie nicht um, so wird Wärme freigesetzt und die Probe erwärmt sich. Die Reaktion ist also exotherm.

Positiv: endotherm

endotherme Reaktion;
in der Abbildung entspricht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta H_\mathrm{R}} im Text

Muss jedoch Energie aufgenommen werden, da die Produkte eine höhere Energie als die Edukte haben, wird Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta H_\mathrm{R}} positiv:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \Delta H_\mathrm{R} & > 0\\ \Leftrightarrow H_\mathrm{Produkte} & > H_\mathrm{Edukte} \end{align}}

Die nötige Energie wird häufig aus der Umgebungswärme entnommen, die Umgebung wird kälter. Prozesse, bei denen Wärme aufgenommen wird, heißen endotherm.

Quantifizierung

Bei Reaktionen molekularer Stoffe lässt sich das Vorzeichen der Reaktionsenthalpie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta H_{\mathrm{R}}} anhand der aufgebrochenen und neu gebildeten Bindungen während der Reaktion abschätzen. Dies beruht auf der Beobachtung, dass polare Bindungen stabiler, also energieärmer, als unpolare Bindungen sind. Sind mehr polare Bindungen in den Produktmolekülen als in den Eduktmolekülen vorhanden, so handelt es sich um eine exotherme, im umgekehrten Fall um eine endotherme Reaktion.[1]

Ein zweiter genauerer Weg beruht auf der Differenzrechnung der Bildungsenthalpien von Edukten und Produkten.

Temperaturabhängigkeit

Die Reaktionsenthalpie ist wie die Bildungsenthalpie temperaturabhängig. Unter der Voraussetzung, dass es im betrachteten Temperaturintervall (von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_1} nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_2} ) nicht zu einem Phasenübergang kommt, ergibt sich die Enthalpie bei wie folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H(T_2) = H(T_1) + \int_{T_1}^{T_2} \mathrm C_\mathrm{p}\, \cdot \mathrm{d}T} .

Wenn die Wärmekapazität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_p} innerhalb des gewählten Temperaturbereichs ungefähr konstant bleibt, kann sie näherungsweise vor das Integral gezogen werden.

Wenn nun eine Reaktion betrachtet wird, ergibt sich für die Reaktionsenthalpie das Kirchhoffsche Gesetz:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow \Delta H_\mathrm{R} (T_2) = \Delta H_\mathrm{R} (T_1) + \int_{T_1}^{T_2} \Delta_\mathrm{R} C_\mathrm{p} \cdot \mathrm{d}T} .

Dabei ergibt sich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_\mathrm{R} C_\mathrm{p}} aus den molaren Wärmekapazitäten der an der Reaktion beteiligten Stoffe und ihren zugehörigen stöchiometrischen Faktoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_\mathrm{R} C_\mathrm{p} = \sum_{k=1}^N \nu_\mathrm{k} \cdot C_\mathrm{p,k}}

Verwandte Größen

Bei konstantem Druck:

Bei konstantem Volumen:

Einzelnachweise

  1. Patrik Good: 5 Thermodynamik (Vorlesungsskript) (Memento vom 17. Januar 2012 im Internet Archive) (PDF; 1,1 MB). S. 6 (19 S.).