Straffes Maß
Ein Straffes Maß ist ein mathematischer Begriff aus der Maßtheorie, einem Teilgebiet der Mathematik, das sich mit der Untersuchung von abstrahierten Volumenbegriffen beschäftigt und die Basis für die Stochastik und die Integrationstheorie liefert. Straffheit ist eine Eigenschaft, die endlichen Maßen sowie Familien und Folgen von endlichen Maßen zukommen kann. Verwendung finden straffe Familien von Maßen beispielsweise bei der Formulierung des Satzes von Prochorow, wo sie zur Charakterisierung von schwach relativ folgenkompakten Mengen von endlichen Maßen auf polnischen Räumen herangezogen werden. Die schwach relativ folgenkompakten Mengen sind von großer Bedeutung, da jede Folge von Elementen aus solch einer Menge immer eine schwache konvergente Teilfolge besitzt.
Definition
Gegeben sei ein metrischer Raum , versehen mit der Borelschen σ-Algebra .
Ein endliches Maß auf heißt ein straffes Maß, wenn zu jedem eine kompakte Menge existiert, so dass
ist. Eine Menge oder Familie von endlichen Maßen heißt straff, wenn zu jedem eine kompakte Menge existiert, so dass
ist. Eine Folge von endlichen Maßen heißt straff, wenn die Menge straff ist.
Für den Spezialfall eines Wahrscheinlichkeitsmaßes folgt, dass genau dann straff ist, wenn für jedes eine kompakte Menge existiert, so dass
ist. Die Straffheit von Mengen, Familien und Folgen von Wahrscheinlichkeitsmaßen folgt dann analog.
Beispiele
Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta_x } das Dirac-Maß auf dem Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x } , aufgefasst als Maß auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\R, \mathcal B (\R)) } , so ist die Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\delta_n)_{n \in \N} } nicht straff. Denn die kompakten Teilmengen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R } sind nach dem Satz von Heine-Borel beschränkt und abgeschlossen. Dann existiert für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon \in (0,1) } und jede kompakte Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K } ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_K \in \N} , so dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_K > x } für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in K } , da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K } beschränkt ist. Damit ist dann aber auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta_{N_K}(\R \setminus K)=1 } für jede beliebige kompakte Menge. Also ist die Folge nicht straff.
Umgekehrt ist die Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal M :=\left(\delta_{a_n}\right)_{n \in \N} } genau dann straff, wenn die Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a_n)_{n \in \N} } beschränkt ist. Denn setzt man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C:= \sup_{n \in \N} |a_n| } , so ist die Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K=[-C,C] } kompakt, und es ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sup_{\mu \in \mathcal M} \; \{ \mu(\R \setminus [-C,C]) \} =0 }
und somit ist das Straffheitskriterium auch für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon > 0 } erfüllt.
Bemerkung
Der Begriff der Straffheit wird in der Literatur, insbesondere im angelsächsischen Sprachraum, nicht eindeutig verwendet. Elstrodt spricht in seinem deutschsprachigen Buch von Straffheit und verweist auf den englischen Begriff „tight“,[1] die Encyclopaedia of Mathematics verweist aber unter tight measure auf ein lokal endliches Maß auf einem Hausdorff-Raum und der entsprechenden borelschen σ-Algebra, das von innen regulär ist.[2] Solche Maße werden bei Elstrodt als Radon-Maße bezeichnet. Auch die Staffheit entspricht nicht dem englischen Begriff der tightness, diese ist die Regularität von innen[3]. Daher ist bei jedem Autor eine Überprüfung der verwendeten Definitionen unerlässlich.
Es ist außerdem ausreichend wenn der Raum lediglich mit einer Topologie ausgestattet ist und keiner Metrik.
Verwandte Begriffe
Die Straffheit lässt sich auch für Verteilungsfunktionen im Sinne der Stochastik definieren, man spricht dann von straffen Familien von Verteilungsfunktionen.
Literatur
- Jürgen Elstrodt: Maß- und Integrationstheorie. 6., korrigierte Auflage. Springer-Verlag, Berlin Heidelberg 2009, ISBN 978-3-540-89727-9, S. 380–400, doi:10.1007/978-3-540-89728-6.
- Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6, S. 265–275, doi:10.1007/978-3-642-36018-3.
- Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. Eine Einführung. 2., überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-45386-1, S. 296, doi:10.1007/978-3-642-45387-8.
- Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2., durchgesehene Auflage. Springer-Verlag, Heidelberg Dordrecht London New York 2011, ISBN 978-3-642-21025-9, S. 400–404, doi:10.1007/978-3-642-21026-6.
Einzelnachweise
- ↑ Elstrodt: Maß- und Integrationstheorie. 2009, S. 380.
- ↑ Tight measure. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 978-1-55608-010-4 (englisch, online).
- ↑ R.A. Minlos: Radon Mesure. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 978-1-55608-010-4 (englisch, online).