Subdirektes Produkt
In der universellen Algebra ergibt sich das Problem, dass nicht alle (universellen) Algebren als direktes Produkt direkt irreduzibler Algebren dargestellt werden können. Als Lösung bietet sich das sogenannte subdirekte Produkt an, eine bestimmte Art einer Unteralgebra eines direkten Produktes. Der erste Darstellungssatz von Garrett Birkhoff besagt dann, dass sich jede Algebra als subdirektes Produkt subdirekt irreduzibler Algebren schreiben lässt.
Definition
Es seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_i (i \in I)} Algebren vom selben Typ, das heißt von derselben algebraischen Struktur, und eine Indexfamilie. Eine Unteralgebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B \subseteq \prod_{i \in I} A_i} heißt subdirektes Produkt der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_i} , falls gilt für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j \in I} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha_j: \prod_{i \in I} A_i \rightarrow A_j} die kanonische Projektion bezeichnet.
Subdirekte Irreduzibilität
Eine Einbettung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi: A \rightarrow \prod_{i \in I} A_i} heißt subdirekte Darstellung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} , falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi(A)} subdirektes Produkt der ist.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} heißt subdirekt irreduzibel, falls für jede subdirekte Darstellung ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j \in I} so existiert, dass ein Isomorphismus ist.
Motivation
Dass eine Algebra im Normalfall nicht als direktes Produkt direkt irreduzibler Algebren dargestellt werden kann, zeigt folgendes Beispiel: Eine boolesche Algebra ist genau dann direkt oder subdirekt irreduzibel, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{card}\, B \leq 2} gilt. Eine abzählbar unendliche boolesche Algebra ist gegeben durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B = (X, \cup, \cap, ', \emptyset, \mathbb{N})} mit Trägermenge . Diese kann unmöglich direktes Produkt zweielementiger Algebren sein, da ein solches Produkt entweder endlich oder überabzählbar ist.
Darstellungssatz von Birkhoff
Jede Algebra ist isomorph zu einem subdirekten Produkt subdirekt irreduzibler Algebren desselben Typs. Die Darstellung als subdirektes Produkt ist nicht eindeutig.
Beispiel
Oben erwähnte boolesche Algebra hat beispielsweise folgende subdirekte Darstellung:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi: X \rightarrow \left\{0, 1\right\}^{\mathbb{N}}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\varphi(x))_j = \begin{cases} 1, & \mbox{falls } j\in x \\ 0, & \mbox{falls } j \not\in x \end{cases}}
Literatur
- Thomas Ihringer: Allgemeine Algebra. Berliner Studienreihe zur Mathematik. Band 10. Heldermann Verlag, 2003 Lemgo