Taylor-Kreis

aus Wikipedia, der freien Enzyklopädie
Grafische Darstellung des Taylor-Kreises

Der Taylor-Kreis eines Dreiecks ist einer der besonderen Kreise der Dreiecksgeometrie.

Der Taylor-Kreis ist nach Henry Martin Taylor (1842–1927) benannt.

Um den Taylor-Kreis zu erhalten, muss man zunächst die Höhen, also die Lote von den Ecken des Dreiecks auf die gegenüber liegenden Seiten zeichnen. Anschließend werden von jedem der drei Höhenfußpunkte je zwei Lote auf die beiden Nachbarseiten gefällt. Diese sechs Lote werden auch als die Nebenhöhen des Dreiecks bezeichnet. Es kann bewiesen werden, dass die sechs Fußpunkte der Nebenhöhen auf einem Kreis liegen. Um den Mittelpunkt dieses so genannten Taylor-Kreises zu finden, braucht man nur zwei Mittelsenkrechte für je zwei der sechs erwähnten Fußpunkte zum Schnitt zu bringen.

Radius

Der Radius des Taylor-Kreises ist

wobei R der Umkreisradius ist.

Mittelpunkt

Der Mittelpunkt des Taylor-Kreises hat die baryzentrischen Koordinaten

und liegt auf der Brocard-Achse. Er hat die Kimberling-Nummer

Weblinks

Siehe auch