Unabhängigkeitssatz von Dedekind
Der Unabhängigkeitssatz von Dedekind ist ein mathematischer Lehrsatz, welcher innerhalb der Algebra angesiedelt ist und auf den Mathematiker Richard Dedekind zurückgeht. Der Satz behandelt die Frage der linearen Unabhängigkeit von Homomorphismen aus Halbgruppen in die Einheitengruppen von kommutativen Körpern und führt als solcher zu elementaren Struktursätzen der Galoistheorie.
Formulierung des Satzes
Der Darstellung Kurt Meybergs[1] folgend lässt sich der Satz angeben wie folgt:
- Gegeben seien eine (multiplikativ geschriebene) Halbgruppe und ein kommutativer Körper und dazu Homomorphismen von in die abelsche Gruppe der Einheiten von .
- Dann sind äquivalent:
- (A1) Die sind paarweise verschieden.
- (A2) Die bilden eine über linear unabhängige Familie des Funktionenraums .
Beweis des Satzes
In Anlehnung an Emil Artin[2] bzw. Kurt Meyberg[1] lässt sich folgender Beweis führen:
A1 → A2
Hier wird vollständige Induktion durchgeführt.
- Induktionsanfang
Es sei und dazu mit .
Dann ist
- .
Wegen gibt es also ein mit
- .
Wegen und der Nullteilerfreiheit von ergibt sich dann
- .
- Induktionsschritt
Sei und sei die Aussage schon bewiesen für jeweils Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n-1} Homomorphismen der beschriebenen Art.
Seien nun Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} beliebige Körperelemente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_1, \ldots, k_n } gegeben und es gelte in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Abb}(H, K)} die Gleichung
- (a)Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{j=1}^{n} {k_j \sigma_j} = 0} .
Zu zeigen ist, dass
- (b)Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_1 = \ldots = k_n = 0}
gilt.
Zunächst gibt es wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_1 \neq \sigma_n } ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h_0 \in H} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_1(h_0) \neq \sigma_n (h_0)} .
Dieses Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h_0 \in H} sei fortan fixiert.
Weiter bedeutet (a), dass stets
- (c) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 = \sum_{j=1}^{n} {k_j \sigma_j(x)} \in K \; \; (\forall x \in H)}
besteht.
Da wegen der Halbgruppeneigenschaft für beliebiges Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in H} auch stets Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle hx \in H} ist, führt (c) einerseits zu
- (d) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 = \sum_{j=1}^{n} {k_j \sigma_j(h_0 x)} = k_1 \sigma_1(h_0)\sigma_1(x) + \sum_{j=2}^{n} {k_j \sigma_j(h_0) \sigma_j(x)}}
und andererseits zu
- (e) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 = \sigma_1(h_0) \sum_{j=1}^{n} {k_j \sigma_j(x)} = k_1 \sigma_1(h_0) \sigma_1(x) + \sum_{j=2}^{n} {k_j \sigma_1(h_0) \sigma_j(x)}} .[3]
Die Subtraktion der Gleichung (e) von der Gleichung (d) ergibt
- (f) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 = \sum_{j=2}^{n} {k_j \bigl( \sigma_j(h_0) - \sigma_1(h_0) \bigr) \sigma_j(x)}} .
Die Gleichung (f) gilt für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in H} und somit hat man in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Abb}(H, K)}
- (g) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 = \sum_{j=2}^{n} {k_j \bigl( \sigma_j(h_0) - \sigma_1(h_0) \bigr) \sigma_j}} .
Da nach Induktionsvoraussetzung die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_2 , \ldots , \sigma_n} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Abb}(H, K) } über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} linear unabhängig sind, folgt aus (g)
- (h) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_j \bigl( \sigma_j(h_0) - \sigma_1(h_0) \bigr) = 0 \;\; (j=2, \ldots , n)}
und insbesondere
- (i) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_n \bigl( \sigma_n(h_0) - \sigma_1(h_0) \bigr) = 0} .
Wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_n (h_0) - \sigma_1(h_0) \neq 0} hat man mit (i) jedoch auch
- (j) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_n = 0 } .
Durch Einsetzen von (j) in (a) hat man in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Abb}(H, K)} dann die Gleichung
- (k) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{j=1}^{n-1} {k_j \sigma_j} = 0 } ,
womit bei nochmaliger Anwendung der Induktionsvoraussetzung auf die in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Abb}(H, K) } über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} linear unabhängigen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_1 , \ldots , \sigma_{n-1}} dann unmittelbar die Gleichung
- (l) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_1 = \ldots = k_{n-1} = 0}
folgt.
Durch die Verbindung von (j) und (l) ist dann schließlich (b) gezeigt.
A2 → A1
Zu dieser Implikation ist nichts weiter zu zeigen, da die Vektoren einer linear unabhängigen Familie eines jeden Vektorraums stets paarweise verschieden sind.
Folgerungen
- Jede Familie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle ({{\sigma}_i \colon \, K_1 \to K_2})_{i \in I}} von paarweise verschiedenen Monomorphismen von einem Körper Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_1} in einen weiteren Körper Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_2} ist in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Abb}(K_1, K_2)} über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_2} linear unabhängig.
- Für jede endliche Körpererweiterung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L/K} ist die Ordnung der Galoisgruppe durch den Grad der Körpererweiterung nach oben beschränkt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\mathrm{Gal}(L/K)| \leq [L\colon K]} .
Anmerkungen zur Namensgebung
Den Unabhängigkeitssatz von Dedekind (bzw. ihm eng verwandte Versionen) trifft man in der Fachliteratur zur Algebra unter verschiedenen Bezeichnungen an. So nennt B. L. van der Waerden ihn allein Unabhängigkeitssatz.[4] Bei Karpfinger-Meyberg etwa wird die obige Folgerung 1 (in der Formulierung für endlichen Familien) als dedekindsches Lemma genannt.[5] In der englischsprachigen Literatur findet sich eine ähnliche Bezeichnung, etwa bei Paul M. Cohn, der einen eng verwandten Satz als Dedekind's lemma (deutsch dedekindsches Lemma) aufführt.[6] Von R B J T Allenby wiederum wird er als Dedekind's independence theorem (deutsch dedekindscher Unabhängigkeitssatz) genannt.[7]
Verwandte Resultate
Ein verwandtes Resultat, welches ebenfalls auf Dedekind zurückgeht, ist das folgende:
- Es seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} zwei kommutative Körper und weiter sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma} eine endliche Untergruppe der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L} -Automorphismengruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Aut} (L)} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K = \operatorname{Fix}(\Gamma)} als Fixkörper.
- Dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [L \colon K] = |{\Gamma}| } .
Karpfinger und Meyberg nennen das Resultat den Satz von Dedekind. In der englischsprachigen Algebraliteratur, etwa bei P. M. Cohn, kennt man es auch (unter Hinweis auf den Mathematiker Emil Artin) als Artin's theorem (deutsch artinscher Satz), wobei Cohn klarstellt, dass als der eigentliche Urheber nicht Artin, sondern Dedekind zu nennen ist.[6][8]
Kurt Meyberg führt in seiner Algebra. Teil 2 diesen artinschen Satz ebenfalls auf,[9] allerdings gibt er darüber hinaus noch einen weiteren, mit dem zuvor genannten Resultat eng verwandten Satz von Emil Artin an, nämlich den folgenden:[10]
- Es seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} zwei kommutative Körper und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L/K} eine endliche Körpererweiterung.
- Dann sind äquivalent:
- (A) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L/K } ist eine Galoiserweiterung.
- (B) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [L\colon K] = |\mathrm{Gal}(L/K)| } .
- (C) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L/K } ist eine zugleich normale und separable Körpererweiterung.
- (D) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L/K } ist Zerfällungskörper eines über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K } separablen Polynoms.
Quellen
- R B J T Allenby: Rings, Fields and Groups. An Introduction to Abstract Algebra. 2. Auflage. Arnold, London (u. a.) 1991 (MR1144518).
- E. Artin: Galoissche Theorie. Verlag Harri Deutsch, Berlin (u. a.) 1968.
- P. M. Cohn: Algebra. Volume 2. 9. Auflage. John Wiley & Sons, London (u. a.) 1989, ISBN 0-471-92234-X (MR1006872).
- Richard Dedekind: Über die Theorie der ganzen algebraischen Zahlen. Mit einem Geleitwort von B. van der Waerden. Friedr. Vieweg & Sohn, Braunschweig 1964 (MR0175878).
- Christian Karpfinger, Kurt Meyberg: Algebra. Gruppen - Ringe - Körper. Spektrum Akademischer Verlag, Heidelberg 2009, ISBN 978-3-8274-2018-3.
- Kurt Meyberg: Algebra. Teil 2 (= Mathematische Grundlagen für Mathematiker, Physiker und Ingenieure). Carl Hanser Verlag, Wien 1976, ISBN 3-446-12172-2 (MR0460011).
- B. L. van der Waerden: Algebra I. 9. Auflage. Springer Verlag, Berlin (u. a.) 1993, ISBN 3-540-56799-2.
Fußnoten und Einzelnachweise
- ↑ a b Meyberg: Algebra. Teil 2. 1975, S. 63–65
- ↑ Artin: Galoissche Theorie. 1968, S. 28–30
- ↑ Hier kommt zum Tragen, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} ein kommutativer Körper ist.
- ↑ van der Waerden: Algebra I. 1993 , S. 159–163
- ↑ Karpfinger-Meyberg: Algebra. Gruppen - Ringe - Körper. 2009, S. 288
- ↑ a b Cohn: Algebra vol. 2. 1989, S. 81,84
- ↑ Allenby: Rings, Fields and Groups. 1991, S. 295
- ↑ Cohn verweist hierzu auf S. 50 des 1964 bei Vieweg, Braunschweig, erschienen Nachdrucks von Dedekinds Werk Über die Theorie der ganzen algebraischen Zahlen. Dort erscheint das Resultat als I. in § 166 und es heißt wörtlich: Besteht eine Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Pi} aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} verschiedenen Permutationen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi} des Körpers Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} , und ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} der Körper von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Pi} , so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (M,A)=n} und der Rest von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Pi} ist die identische Permutation von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} .
- ↑ Kurt Meyberg: Algebra, Teil 2. Carl Hanser Verlag, Wien 1976, S. 73.
- ↑ Kurt Meyberg: Algebra, Teil 2. Carl Hanser Verlag, Wien 1976, S. 75.