Grenzwert (Folge)
Der Grenzwert oder Limes einer Folge von Zahlen ist eine Zahl, der die Folgenglieder beliebig nahe kommen und zwar so, dass in jeder Umgebung des Grenzwerts fast alle Folgenglieder liegen. Besitzt eine Folge so einen Grenzwert, so spricht man von Konvergenz der Folge – die Folge ist konvergent; sie konvergiert –, andernfalls von Divergenz.
Ein Beispiel für eine konvergente Folge ist , mit wachsendem n nähert sie sich der Zahl 0, dies ist also ihr Grenzwert. Eine solche Folge nennt man auch Nullfolge. Die konstante Folge konvergiert ebenfalls, ihr Grenzwert ist gerade die Zahl . Hingegen divergiert die Folge , da sie sich nicht nur einer Zahl annähert, sondern zwischen den beiden Werten −1 und 1 alterniert („hin und her springt“).
Damit die Folgenglieder einem anderen Wert, dem angepeilten Limes, beliebig nahe kommen, müssen ihre Differenzen immer kleiner werden, also eine Nullfolge bilden. Um diesen Effekt deutlich zu machen (und das ist nicht selten beabsichtigt), wählt man diese Differenzen als Glieder. Man muss sie dann aber durch Additionszeichen miteinander verbinden – eine Darstellungsform, die Reihe genannt wird. Die Folge der Partialsummen dieser Reihe entspricht genau der ursprünglichen Folge, und Konvergenz, Divergenz und Grenzwert der Reihe werden mit der ursprünglichen Folge gleichgesetzt.
Der Grenzwert einer Folge ist nicht nur für Zahlenfolgen definiert, sondern ganz genau so für Folgen, deren Glieder einem metrischen Raum angehören, d. h. dass zwischen ihnen ein reellwertiger Abstand definiert ist. In einer weiteren Verallgemeinerung genügt auch ein topologischer Raum; dort lässt sich auch ohne Metrik der Begriff Umgebung definieren, der hier gebraucht wird. Siehe dazu die Abschnitte Grenzwert einer Folge von Elementen eines metrischen Raumes und eines topologischen Raumes.
Die Konvergenz ist ein grundlegendes Konzept der modernen Analysis. Im allgemeineren Sinne wird es in der Topologie behandelt.
In der altgriechischen Philosophie und Mathematik stand der Grenzwertbegriff noch nicht zur Verfügung, siehe beispielsweise Achilles und die Schildkröte. Die moderne Formulierung des Grenzwertbegriffs („für jede noch so kleine Abweichung gibt es einen ersten Index …“) taucht erstmals 1816 bei Bernard Bolzano auf,[1] später weiter formalisiert durch Augustin-Louis Cauchy und Karl Weierstrass.
Grenzwert einer reellen Zahlenfolge
Erläuterung und Definition
Jedes Glied einer Folge reeller Zahlen hat einen Index . Die Zahl ist der Grenzwert dieser Folge, falls für jedes alle Glieder mit hinreichend großem Index „um herum“ in dem offenen Intervall liegen. Also liegen dann auch nur endlich viele Folgenglieder außerhalb des Intervalls, und diese haben alle einen kleineren Index. Das Intervall ist dabei die im Einleitungstext erwähnte Umgebung des Grenzwerts; genauer wird diese als -Umgebung von a bezeichnet und dann geschrieben.[2] Die Sprechweisen „ hat den Grenzwert a“ und „ konvergiert gegen a“ sind gleichbedeutend.
Diese Konkretisierung lässt sich gut mit der anschaulichen Interpretation der Konvergenz als „Annäherung an den Grenzwert“ in Einklang bringen: Egal, wie man das wählt, liegen ab einem gewissen Index alle Glieder stets in , sodass also ihr Abstand zu kleiner als ist. So ergibt sich die exakte Definition:
Die Zahl heißt Grenzwert der Folge , falls zu jedem eine natürliche Zahl existiert, sodass stets gilt, falls
Diese Definition fordert also: Zu jedem gibt es einen Index mit der Eigenschaft, dass alle Folgenglieder mit dem Index oder einem größeren weniger als von entfernt sind.
Dies ist so zu verstehen, dass als eine beliebig kleine positive Zahl vorgegeben werden darf, und dass es dann stets möglich ist, ein genügend großes so anzugeben, dass und alle darauf folgenden Glieder die Bedingung erfüllen. Man sagt dann, dass fast alle Folgenglieder, also alle bis auf endlich viele Folgenglieder, die Bedingung erfüllen.
Hinweis 1: Wenn die Konvergenz einer Folge mit dieser Definition nachgewiesen werden soll, muss der Grenzwert im Vorhinein bekannt sein. Es gibt allerdings auch Kriterien, mit denen die Konvergenz einer Folge nachgewiesen werden kann, ohne dass der Grenzwert bekannt ist: siehe Konvergenzkriterien.
Hinweis 2: Die (durch die Häufigkeit ihrer Benutzung) auffällige Bezeichnung „kleiner“ Zahlen durch den Buchstaben hat sich allgemein eingebürgert und wird karikierend auch als Epsilontik bezeichnet.
Illustration
Auch bei einem kleineren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon_1 > 0} gibt es einen Mindestindex Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_1} , nach dem die Folge vollständig im Epsilon-Schlauch verläuft.
Egal welches Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon > 0} wir vorgeben, nur endlich viele Folgenglieder liegen außerhalb des Epsilon-Schlauchs Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a-\varepsilon,a+\varepsilon)} .
Eindeutigkeit des Grenzwertes
Der Grenzwert einer Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a_n)} ist, sofern er existiert, eindeutig bestimmt.
Diese Aussage ergibt sich direkt aus der Definition anhand eines Widerspruchsbeweises. Hätte eine Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a_n)} nämlich zwei verschiedene Grenzwerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \neq b} , so besäßen diese einen Abstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d=|a-b|>0} . Betrachtet man nun Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon} -Umgebungen mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon<\tfrac{d}{2}} zu den beiden Grenzwerten, also im reellen Fall die Intervalle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a-\epsilon, a+\epsilon)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (b-\epsilon, b+\epsilon)} , so besitzen diese keinen gemeinsamen Punkt. Nach der Definition des Grenzwerts müssen jedoch ab einem bestimmten Index alle Folgenglieder in der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon} -Umgebung des Grenzwertes liegen und somit müssten die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon} -Umgebungen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b} unendlich viele gemeinsame Punkte haben. Dieser Widerspruch lässt sich nur beheben, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b} keinen positiven Abstand besitzen, also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a = b} gilt.[3]
Notation
Für den Grenzwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} einer Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a_n)_{n\in\N}} gibt es ein eigenes Symbol, man schreibt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty} a_n = a} .
Neben dieser Notation ist auch die Schreibweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n\to a} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \to \infty} , gelesen als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n\;} konvergiert gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\;} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} gegen unendlich, oder kurz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n\to a} üblich.
Mit dieser Schreibweise lässt sich die Definition des Grenzwertes einer Folge verkürzen: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty} a_n = a \quad \Longleftrightarrow \quad \forall \varepsilon>0 \; \exists N\in\mathbb{N} \; \forall n \ge N: \;\left|a_n-a \right|<\varepsilon } .
Unter Verwendung der Umgebungs-Schreibweise lautet die Definition: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty} a_n = a \quad \Longleftrightarrow \quad \forall \varepsilon>0 \; \exists N\in\mathbb{N} \; \forall n \ge N: \;a_n \in U_{\varepsilon}(a) } .
Beispiele
Die Definition des Grenzwertes soll an einem Beispiel deutlich gemacht werden, anschließend sind weitere Grenzwerte aufgeführt.
- Um zu beweisen, dass die Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{1}{n}} gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0} konvergiert, wählt man zu vorgegebenem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon} als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} irgendeine natürliche Zahl, die größer als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{1}{\varepsilon}} ist (die Existenz eines solchen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} ist durch das archimedische Axiom gesichert). Dann gilt für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \geq N} :
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |a_n-0| = \frac{1}{n} \leq \frac{1}{N} < \varepsilon }
Die erste Ungleichung folgt dabei aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \geq N} , die zweite aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N>\tfrac{1}{\varepsilon}} . Hiermit ist die geforderte Existenz des Index Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} gezeigt, die Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0} ist Grenzwert der Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n=\tfrac{1}{n}} .
Folgen, die gegen 0 konvergieren, wie ebendieses Beispiel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{1}{n}} , werden Nullfolgen genannt.
- Die konstante Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (c)} mit einer festen reellen Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} konvergiert gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} .
- Die Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1; 1{,}4; 1{,}41; 1{,}414; 1{,}4142; 1{,}41421; \dotsc)} der abbrechenden Dezimalbruchentwicklungen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{2}} konvergiert gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{2}} .
- Die Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (e_n)} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e_n=\left(1+\tfrac{1}{n}\right)^n} ist konvergent gegen die Eulersche Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e} . Die Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(1+ \tfrac{r}{n}\right)^n} konvergiert gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e^r} . Diese Zahlenfolge tritt beim Problem der stetigen Verzinsung (siehe Zinsrechnung) auf.
- Die Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (c_n)} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_n=(-1)^n + \tfrac{1}{n}} ist nicht konvergent, besitzt jedoch zwei konvergente Teilfolgen für gerade und ungerade Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} .
Rechenregeln
Für Grenzwerte gelten folgende Rechenregeln:
Existiert der Grenzwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} a_n=a} , so existieren für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c\in\R\;} auch die folgenden Grenzwerte und können wie angegeben berechnet werden:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} ca_n=ca, }
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} \left(c+ a_n\right)=c+a,}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} \left(c-a_n\right)=c-a.}
Ist zusätzlich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\neq 0} , so ist auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n\neq 0} ab einem gewissen Index Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_0\;} und für die Teilfolge der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n>N_0\;} gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} \frac{c}{a_n}=\frac{c}{a}.}
Existieren die Grenzwerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} a_n=a} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} b_n=b} , so existieren auch die folgenden Grenzwerte und können wie angegeben berechnet werden:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} \left(a_n+b_n\right)= a+b,}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} \left(a_n-b_n\right)= a-b,}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} \left(a_n\cdot b_n\right)= a\cdot b.}
Ist zusätzlich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b\neq 0} , so ist auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_n\neq 0} ab einem gewissen Index Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_0\;} und für die Teilfolge der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n>N_0\;} , dann gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} \frac{a_n}{b_n}=\frac{a}{b} } .
Mit Hilfe dieser Rechenregeln lassen sich in vielen Fällen aus bekannten Grenzwerten einfach weitere Grenzwerte berechnen. So erhält man beispielsweise für den Grenzwert der Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{2n^2-1}{n^2+1}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty}\frac{2n^2-1}{n^2+1}=\lim_{n\to\infty}\frac{2-\frac{1}{n^2}}{1+\frac{1}{n^2}} =\frac{\lim_{n\to\infty}\left(2-\frac{1}{n^2}\right)}{\lim_{n\to\infty}\left(1+\frac{1}{n^2}\right)} =\frac{2-\lim_{n\to\infty}\frac{1}{n^2}}{1+\lim_{n\to\infty}\frac{1}{n^2}}=\frac {2-0}{1+0}=2.}
Grenzwert einer beschränkten konvergenten Folge
Für die hier betrachteten Folgen ist Monotonie nicht vorausgesetzt.
- Hat eine konvergente Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a_n)} reeller Zahlen eine obere Schranke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma} (d. h. für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n} gilt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n \leq \sigma} ), so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty} a_n = a \leq \sigma } .
(Indirekter) Beweis: Annahme: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a>\sigma} . Dann lässt sich ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 < \epsilon = a - \sigma} vorgeben, und für fast alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n} gilt (siehe oben Abschnitt "Erläuterung und Definition"):
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n > a -\epsilon = a - (a - \sigma) = \sigma } (Widerspruch).
- Hat eine konvergente Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a_n)} reeller Zahlen eine untere Schranke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma} (d. h. für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n} gilt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n \geq \sigma} ), so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty} a_n = a \geq \sigma } .
(Indirekter) Beweis: Annahme: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a<\sigma} . Dann lässt sich ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 < \epsilon = \sigma - a} vorgeben, und für fast alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n} gilt (siehe oben Abschnitt "Erläuterung und Definition"):
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n < a +\epsilon = a + (\sigma - a) = \sigma } (Widerspruch).
Wichtige Grenzwerte
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty}\frac{1}{n}=0}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty}\sqrt[n]{n}=1}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} \left(1+\frac {z}{n}\right)^n=e^z} für komplexe (und damit insbesondere für reelle) Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} .
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} n(a^{\frac1{n}}-1) = \ln a} für reelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a>0}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty}\left(\sum_{i = 1}^n \frac{1}{i} -\ln n\right) = \gamma} (Euler-Mascheroni-Konstante)
Grenzwertbildung und Funktionsauswertung
Die Rechenregeln lassen sich als Spezialfall folgender Gesetzmäßigkeiten auffassen:
- Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\colon\R\to\R} stetig im Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} und konvergiert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n} gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} , so gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} f\left(a_n\right) = f\left(\lim_{n\to\infty} a_n\right)=f(a)} ;
- Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g\colon\R^2\to\R} stetig im Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a,b)} und konvergieren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n} gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_n} gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b} , so gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} g\left(a_n,b_n\right) = g\left(\lim_{n\to\infty} a_n, \lim_{n\to\infty} b_n\right)=g(a,b)} .
Für stetige Funktionen sind also Grenzwertbildung und Funktionsauswertung vertauschbar. Die oben angegebenen Rechenregeln folgen damit direkt aus der Stetigkeit der Addition, Subtraktion, Multiplikation und, falls der Nenner ungleich Null ist, Division.
In den reellen Zahlen gilt auch die Umkehrung: Ist die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\colon\R\to\R} gegeben und gilt für alle Folgen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a_n)_{n\in\N}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n\to a} auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} f\left(a_n\right) =f(a)} , so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} stetig im Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} .
Das Entsprechende gilt für jede Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g\colon\R^2\to\R} : Gilt für alle Folgen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a_n)_{n\in\N}} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(b_n\right)_{n\in\N}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n\to a} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_n\to b} auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} g\left(a_n,b_n\right) =g(a,b)} , so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} stetig im Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a,b)} .
Konvergenzkriterien
Bei der oben angegebenen Definition der Konvergenz wird der Grenzwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\;} in der Definition verwendet. Der Grenzwert muss also bekannt sein oder zumindest vermutet werden, damit mit dieser Definition die Konvergenz der Folge nachgewiesen werden kann. Es gibt allerdings auch Konvergenzkriterien, mit denen die Konvergenz einer Folge nachgewiesen werden kann, ohne dass der Grenzwert bekannt ist.
Das Monotoniekriterium besagt, dass eine monoton wachsende Folge genau dann konvergiert, wenn sie nach oben beschränkt ist. Der Grenzwert der Folge ist dann kleiner gleich der oberen Schranke. Formal gilt also:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n\leq a_{n+1} \text { und } a_n\leq A \text{ für alle } n \quad \Rightarrow \quad a_n \text{ konvergiert und } \lim_{n\to\infty} a_n \leq A} .
Ebenso konvergiert eine monoton fallende und nach unten beschränkte Folge.
Das Cauchy-Kriterium beruht auf dem Begriff der Cauchy-Folge: Eine Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a_n) _{n\in \mathbb{N}} } heißt Cauchy-Folge, wenn gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall \varepsilon>0\ \exists N\in\mathbb{N}:\ \forall n,m\in\mathbb{N}, n \geq N, m \geq N: |a_m- a_n| < \varepsilon} .
Das Cauchy-Kriterium besagt nun, dass eine Folge in den reellen Zahlen genau dann konvergiert, wenn sie eine Cauchy-Folge ist. Dieses Kriterium spielt insbesondere bei der Konstruktion der reellen Zahlen aus den rationalen Zahlen und bei der Erweiterung des Grenzwertbegriffs auf metrische Räume eine wichtige Rolle.
Bestimmung von Grenzwerten
Ist die Konvergenz einer Folge nachgewiesen, lässt sich der Grenzwert in vielen Fällen näherungsweise bestimmen, indem in die Folge ein großes n eingesetzt wird und der Rest abgeschätzt wird. Beispielsweise ergibt sich für den Grenzwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty}\left(1+\frac1{n}\right)^n=e} wegen der Abschätzung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(1+\frac1{n}\right)^n < e < \left(1+\frac1{n}\right)^{n+1}} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=1000} die Abschätzung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2{,}7169\dotso < e < 2{,}7196\dotso}
Es gibt jedoch kein allgemeines Verfahren zur exakten Bestimmung von Grenzwerten. In vielen Fällen lässt sich die Regel von de L’Hospital anwenden. Manchmal ist es nützlich den Grenzwert in ein bestimmtes Integral umzuwandeln. Oft führen jedoch nur raffinierte Zerlegungen und Umformungen weiter.
Bestimmte Divergenz
In den reellen Zahlen unterscheidet man zwischen bestimmter Divergenz und unbestimmter Divergenz:
Bestimmte Divergenz gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle +\infty} (bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -\infty} ) liegt vor, wenn eine Folge xn jede reelle Zahl irgendwann überschreitet und dann darüber bleibt (bzw. jede reelle Zahl unterschreitet und dann darunter bleibt). Das heißt,
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall M\in\mathbb{R} \ \exists N\in\mathbb{N} \quad \forall n>N: x_n>M}
bzw.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall M\in\mathbb{R} \ \exists N\in\mathbb{N} \quad \forall n>N: x_n<M} .
Man schreibt dann
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty} x_n = \infty}
bzw.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty} x_n = -\infty}
und sagt, die Folge divergiert bestimmt gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \infty} bzw. gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -\infty} . Die Werte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \infty} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -\infty} werden in diesem Zusammenhang oft auch uneigentliche Grenzwerte genannt beziehungsweise die bestimmte Divergenz als uneigentliche Konvergenz bezeichnet. Dass diese Werte ebenfalls als Grenzwert in einem etwas weiteren Sinne angesehen werden, ist insofern gerechtfertigt, als die uneigentlichen Grenzwerte in den erweiterten reellen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{\R}:=\R \cup \{-\infty, +\infty \}} , versehen mit einer passenden Topologie, echte Grenzwerte im Sinne des weiter unten beschriebenen allgemeinen topologischen Grenzwertbegriffs sind.
Unbestimmte Divergenz liegt vor, wenn die Folge weder konvergiert noch bestimmt divergiert.
Beispiele
- Die Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (n)} der natürlichen Zahlen divergiert bestimmt gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \infty} .
- Die Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (+1; -1; +1; -1; \dotsc)} divergiert unbestimmt.
- Die Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1; -2; 3; -4; 5; -6; \dotsc)} divergiert unbestimmt.
Grenzwert und Häufungspunkt
Ein mit dem Grenzwert einer Folge eng verwandter Begriff ist der Häufungspunkt oder auch Häufungswert einer Folge. Die formalen Definitionen unterscheiden sich lediglich in der Position der Existenz- bzw. Allquantoren:
Während der Grenzwert als
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\lim_{n \to \infty} a_n = a \right) \quad :\Longleftrightarrow \quad \forall \varepsilon>0 \; \exists N\in\mathbb{N} \; \forall n>N: \;\left|a_n-a \right|<\varepsilon }
definiert ist, gilt für den Häufungspunkt „nur“
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\;} ist Häufungspunkt von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n :\Longleftrightarrow \quad \forall \varepsilon>0 \; \forall N\in\mathbb{N} \; \exists n>N: \;\left|a_n-a \right|<\varepsilon } .
Die Definition des Grenzwertes verlangt also, dass in jeder Umgebung des Grenzwertes ab einem gewissen Index alle Folgenglieder liegen; die Definition des Häufungspunktes verlangt lediglich, dass in jeder Umgebung unendlich viele Folgenglieder liegen.
Analog zu den uneigentlichen Grenzwerten werden gelegentlich die uneigentlichen Häufungspunkte definiert:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle +\infty\;} ist uneigentlicher Häufungspunkt von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n \Longleftrightarrow \forall M\in\mathbb{R} \ \forall N\in\mathbb{N} \quad \exists n>N: \quad x_n>M} ,
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -\infty\;} ist uneigentlicher Häufungspunkt von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n \Longleftrightarrow \forall M\in\mathbb{R} \ \forall N\in\mathbb{N} \quad \exists n>N: \quad x_n<M} .
Auch die Definition des uneigentlichen Häufungspunktes unterscheidet sich von der Definition des uneigentlichen Grenzwertes nur durch die Position der Existenz- bzw. Allquantoren.
Wenn eine Folge einen eigentlichen (bzw. uneigentlichen) Grenzwert hat, so ist dieser Grenzwert auch eigentlicher (bzw. uneigentlicher) Häufungspunkt. Während eine Folge aber höchstens einen Grenzwert hat, kann sie mehrere Häufungspunkte haben. Für jeden eigentlichen (bzw. uneigentlichen) Häufungspunkt gibt es eine Teilfolge, die gegen diesen Häufungspunkt konvergiert (bzw. bestimmt divergiert). Enthält umgekehrt eine Folge eine konvergente (bzw. bestimmt divergente) Teilfolge, so ist der (eigentliche bzw. uneigentliche) Grenzwert dieser Folge ein (eigentlicher bzw. uneigentlicher) Häufungspunkt der Folge.
Nach dem Satz von Bolzano-Weierstraß enthält jede beschränkte reelle Folge eine konvergente Teilfolge. Ist die Folge nach oben unbeschränkt, enthält sie eine gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle +\infty} bestimmt divergente Teilfolge, ist sie nach unten unbeschränkt, so enthält sie eine gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -\infty} bestimmt divergente Teilfolge. Jede reelle Folge hat somit mindestens einen eigentlichen oder uneigentlichen Häufungspunkt. Der größte dieser Häufungspunkte wird als Limes superior bezeichnet, der kleinste als Limes inferior. Eine formale Definition dazu findet sich im Artikel Limes superior und Limes inferior. Stimmen der Limes superior und der Limes inferior überein, so ist dieser Wert auch eigentlicher oder uneigentlicher Grenzwert und die Folge ist konvergent bzw. bestimmt divergent. Sind Limes superior und der Limes inferior unterschiedlich, so ist die Folge unbestimmt divergent.
Grenzwert einer rationalen Zahlenfolge
Der Grenzwert einer Folge rationaler Zahlen wird formal wie der Grenzwert einer Folge reeller Zahlen definiert:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\lim_{n \to \infty} a_n = a \right) \quad \Longleftrightarrow \quad \forall \varepsilon>0 \; \exists N\in\mathbb{N} \; \forall n>N: \;\left|a_n-a \right|<\varepsilon } ,
die rationalen Zahlen werden also als in die reellen eingebettet aufgefasst. Während das bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n\;} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon\;} gleich aussieht, kann es sich beim Grenzwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\;} wesentlich auswirken. Bspw. ist der Grenzwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{2}} , gegen den die oben angegebene Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1; 1{,}4; 1{,}41; 1{,}414; 1{,}4142; 1{,}41421; \dotsc)} der abbrechenden Dezimalbruchentwicklungen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{2}} konvergiert, irrational. Die rationalen Zahlen weisen somit „Lücken“ auf. Des Weiteren kann die Untersuchung, ob ein Grenzwert rational ist oder nicht, sehr aufwendig sein, und die Konvergenzkriterien beschreiben normalerweise nicht das Konvergenzverhalten innerhalb der rationalen oder gaußschen rationalen Zahlen, sondern nur bezogen auf die hinsichtlich Vollständigkeit erweiterten reellen oder komplexen Zahlen.
Die „Lücken“ waren bereits Euklid in der Antike bekannt; es gelang aber erst im 19. Jahrhundert diese „Lücken“ durch die systematische Einführung der reellen Zahlen zu schließen. Ein häufig verwendeter Weg der systematischen Einführung der reellen Zahlen besteht darin, zuerst Cauchy-Folgen rationaler Zahlen zu betrachten, jene Cauchy-Folgen als äquivalent zu betrachten, deren Differenzen eine Nullfolge bilden, und darauf aufbauend die reellen Zahlen als Klassen äquivalenter Folgen zu definieren. In dieser Zahlbereichserweiterung gelten dann das oben angegebene Monotonie- und Cauchy-Kriterium; insbesondere dass nun jede Cauchy-Folge konvergent ist.
Für die Aussage, ob eine Folge konvergiert, ist es also wichtig zu wissen, welcher Zahlbereich betrachtet wird; eine Folge, die in den reellen Zahlen konvergiert, muss dies in den rationalen Zahlen nicht tun. Wenn nichts anderes dazugesagt wird, werden Grenzwerte aber üblicherweise über den reellen Zahlen betrachtet, da diese für die meisten Anwendungen das geeignetere Modell sind.
Grenzwert einer komplexen Zahlenfolge
Der Grenzwert einer Folge komplexer Zahlen wird formal ebenfalls wie der Grenzwert einer Folge reeller Zahlen definiert:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\lim_{n \to \infty} a_n = a \right) \quad \Longleftrightarrow \quad \forall \varepsilon>0 \; \exists N\in\mathbb{N} \; \forall n>N: \;\left|a_n-a \right|<\varepsilon }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n\;} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\;} bezeichnen dabei komplexe Zahlen, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon\;} ist weiterhin eine reelle Zahl. Eine Schreibweise der Art Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a-\varepsilon<a_n<a+\varepsilon\;} ist hier nicht mehr möglich, da sich auf den komplexen Zahlen keine geeignete Ordnungsrelation definieren lässt. Aus dem gleichen Grund lassen sich die Begriffe monoton steigend und fallend auf den komplexen Zahlen nicht geeignet definieren, daher ist auch das Monotoniekriterium nicht mehr anwendbar. Sehr wohl gilt aber weiterhin das zweite Hauptkriterium: eine Folge komplexer Zahlen ist genau dann konvergent, wenn sie eine Cauchy-Folge ist. Ein weiteres Konvergenzkriterium für komplexe Zahlen ist, dass eine Folge komplexer Zahlen genau dann konvergent ist, wenn sowohl die Folge der Realteile als auch die Folge der Imaginärteile konvergiert.
Grenzwert einer Folge von Elementen eines metrischen Raumes
Der Abstand zwischen den Folgengliedern und dem Grenzwert wurde als Betrag der Differenz angegeben. Sind die Folgenglieder keine reellen Zahlen, sondern z. B. Punkte in einem dreidimensionalen Raum, so wird der Betrag der Differenz durch eine Norm der Differenz oder noch allgemeiner durch eine Metrik ersetzt. Eine Folge wird dann als konvergent gegen einen Grenzwert a definiert, wenn in jeder ε-Umgebung von a fast alle Folgenglieder liegen.
Definition der Konvergenz
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X, d)} ein metrischer Raum. Eine Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a_n)} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} heißt konvergent gegen den Grenzwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \in X} , wenn gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall {\varepsilon > 0} \ \exists \ N \in \mathbb{N} \; \forall \ n > N: \; d(a, a_n) < \varepsilon\, }
in Worten: Es gibt für jedes beliebige (noch so kleine) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon} einen Index Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} (i. A. abhängig von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon} ), derart, dass für alle Indizes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n > N} , alle weiteren Folgenglieder, gilt: der Abstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d(a, a_n)} ist kleiner als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon} .
Dies entspricht der oben angegebenen Definition der Konvergenz einer Folge reeller Zahlen, es wird lediglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |a_n - a| < \varepsilon} durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d(a_n,a) < \varepsilon} ersetzt.
Auch hier ist neben der Schreibweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty} a_n = a } die Schreibweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n\to a} , ebenfalls gelesen als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n} konvergiert gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\;} , üblich. Falls die hierbei gemeinte Metrik nicht eindeutig erkennbar ist, so wird dies gelegentlich auch durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n\,\stackrel{\mathrm{d}}{\to}\,a} kenntlich gemacht.
Cauchy-Folgen und Vollständigkeit
Analog zu den reellen Zahlen spielt der Begriff der Cauchy-Folge in metrischen Räumen eine wichtige Rolle. Eine Folge heißt Cauchy-Folge, wenn
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall \varepsilon>0\ \exists N\in\mathbb{N}\ \forall n,m\in\mathbb{N}, n>N, m>N: \quad d(a_m, a_n) < \varepsilon} .
Hat jede Cauchy-Folge einen Grenzwert, so wird der metrische Raum als vollständig bezeichnet. Insbesondere sind die reellen und die komplexen Zahlen vollständig, die rationalen Zahlen aber nicht. Ist der metrische Raum nicht vollständig, dann lässt er sich analog zur Konstruktion der reellen Zahlen aus den rationalen Zahlen in den vollständigen metrischen Raum einbetten, der durch die Äquivalenzklassen von Cauchy-Folgen bezüglich der Äquivalenzrelation
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a_n)\sim(b_n) :\quad\Leftrightarrow\quad d(a_n,b_n)\to 0}
gebildet wird.
Absolute Konvergenz
Der Begriff der absoluten Konvergenz lässt sich zwar nicht unmittelbar auf metrische Räume übertragen, für vollständige metrische Räume gibt es aber ein eng verwandtes Resultat: Eine Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(a_n\right)_{n\in\N}} ist zumindest dann konvergent, wenn die Summe
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{n\in\N} d\left(a_n,a_{n+1}\right)}
konvergiert. Aus der Konvergenz dieser Summe folgt nämlich, dass für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon > 0\;} ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N\;} existiert, sodass für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m>n>N\;} die Beziehung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{\nu=n}^{m-1} d\left(a_v,a_{v+1}\right)<\varepsilon}
gilt. Durch mehrfache Anwendung der Dreiecksungleichung folgt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d\left(a_n,a_m\right)\leq \sum_{\nu=n}^{m-1} d\left(a_v,a_{v+1}\right)<\varepsilon} ,
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(a_n\right)_{n\in\N}} ist somit eine Cauchyfolge und damit in einem vollständigen Raum konvergent.
Grenzwert einer Folge von Elementen eines topologischen Raumes
Definition
Der Grenzwertbegriff wird in der Topologie verallgemeinert. Ist ein topologischer Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,\mathfrak T)} , also eine Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} mit der Menge der in diesem topologischen Raum offenen Teilmengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{T}} gegeben, so wird der Grenzwert einer Folge von Elementen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n \in X} gegen einen Grenzwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \in X} folgendermaßen definiert:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty} a_n = a \quad\Longleftrightarrow\quad \forall U \in \mathfrak U(a)\; \exists N \in \N \; \forall n > N\colon\; a_n \in U.}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U \in \mathfrak U(a)} sind dabei die sogenannten Umgebungen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} , das sind die Mengen, für die eine Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle O \in \mathfrak T} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \in O\subseteq U} existiert.
Anstelle alle Umgebungen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} zu betrachten, ist es für den Nachweis der Konvergenz oft zweckmäßiger, sich auf eine Umgebungsbasis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak B(a)} zu beschränken, also auf eine Teilmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak B(a) \subseteq \mathfrak U(a)} mit der Eigenschaft, dass für jede Umgebung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U \in \mathfrak U(a)} eine Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B \in \mathfrak B(a)} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B \subseteq U} existiert. Es gilt dann die leichter nachweisbare äquivalente Formulierung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty} a_n = a \quad\Longleftrightarrow\quad \forall B \in \mathfrak B(a)\;\exists N \in \N\; \forall n > N\colon\; a_n \in B.}
Dieser Grenzwertbegriff beinhaltet den Grenzwert einer Zahlenfolge und den Grenzwert einer Folge von Elementen eines metrischen Raumes als Spezialfälle. Insbesondere bildet in metrischen Räumen die Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak B(a)=\{B_\varepsilon(a) \mid \varepsilon>0\}} aller offenen Kugeln Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_\varepsilon(a):=\{x\in X \mid d(x,a)<\varepsilon\}} eine Umgebungsbasis von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} . Verwendet man diese Umgebungsbasis, erhält man genau die oben angegebene Definition des Grenzwerts in metrischen Räumen.
Erfüllt eine Topologie das erste Abzählbarkeitsaxiom, so reichen Grenzwerte von Folgen aus, um damit die Topologie zu beschreiben, insbesondere gilt, dass ein Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} genau dann in der abgeschlossenen Hülle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar A} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} liegt, wenn es eine Folge von Elementen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_n \in A} gibt, die gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} konvergiert.[4] Insbesondere erfüllen metrische Räume das erste Abzählbarkeitsaxiom, da beispielsweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak B(a) = \{B_{1/k}(a) \mid k\in\N\}} eine Umgebungsbasis von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} ist.
In allgemeinen topologischen Räumen gilt diese Charakterisierung abgeschlossener Mengen als Grenzwerte von Folgen nicht, dort müssen statt Grenzwerten von Folgen Grenzwerte verallgemeinerter Folgen, sogenannter Netze betrachtet werden.
In allgemeinen topologischen Räumen kann es auch sein, dass eine Folge mehrere Grenzwerte hat. So konvergiert beispielsweise in der trivialen Topologie von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} , in der lediglich die leere Menge sowie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} selbst offene Mengen sind, jede Folge gegen jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \in X} . Verlangt man aber zusätzlich, dass der topologische Raum das hausdorffsche Trennungsaxiom erfüllt, so hat in einem solchen topologischen Raum jede Folge höchstens einen Grenzwert. Insbesondere ist in metrischen Räumen das hausdorffsche Trennungsaxiom erfüllt.
Beispiele
Konvergenz von Funktionenfolgen
Um das Verhalten von Funktionenfolgen zu beschreiben, gibt es mehrere Konvergenzbegriffe, da es zum einen mehrere Abstandsbegriffe in einem Funktionenraum gibt und ferner neben der Frage nach der Existenz des Grenzwerts auch Fragen nach den Eigenschaften der Grenzfunktion auftauchen. So ist die Grenzfunktion einer Folge von stetigen Funktionen nicht notwendigerweise stetig.
Konvergenz in der Stochastik
Um speziell bei Anwendungen in der Statistik angemessen darüber entscheiden zu können, ob Schätz- oder Testverfahren asymptotisch die richtigen Resultate liefern, insbesondere für Aussagen wie die Gesetze der großen Zahlen und die Zentralen Grenzwertsätze, haben sich verschiedene Konvergenzbegriffe in der Stochastik herausgebildet. Im Prinzip handelt es sich dabei ebenfalls um Grenzwerte von Funktionenfolgen, da Zufallsvariablen in der Stochastik als Funktionen eines Wahrscheinlichkeitsraums modelliert werden. Für die Anwendungen der Stochastik hat es sich aber als zweckmäßig herausgestellt, eigene Bezeichnungen und auch eigene Konvergenzbegriffe einzuführen. Beispiele hiefür sind die Konvergenz im p-ten Mittel, die Konvergenz in Verteilung, die Konvergenz in Wahrscheinlichkeit und die fast sichere Konvergenz.
Fréchet-Axiome
Ein sehr allgemeiner Grenzwertbegriff wird durch die Fréchet-Axiome definiert: Ein Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} wird als Raum mit Konvergenz im Sinne von Fréchet bezeichnet, wenn
- Jede Folge mit Elementen aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} höchstens einen Grenzwert hat,
- Jede konstante Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_n=x\in X} gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} konvergiert, und
- Jede Teilfolge einer konvergenten Folge ebenfalls konvergiert und den gleichen Grenzwert wie die Ausgangsfolge hat.
Dieser Grenzwertbegriff stimmt jedoch nicht mit dem Grenzwertbegriff der Topologie überein. Erstens können Folgen in Topologien, die das Hausdorff-Axiom nicht erfüllen, mehrere Grenzwerte haben. Zweitens reichen in Topologien, die das erste Abzählbarkeitsaxiom nicht erfüllen, Folgen alleine nicht aus, um die Topologie eindeutig zu beschreiben, sodass die Fréchet-Axiome auf Netze erweitert werden müssen. Drittens gibt es Konvergenzbegriffe, die den Frechét-Axiomen genügen, aber nicht durch eine Topologie erzeugt werden können, beispielsweise die punktweise Konvergenz fast überall.[5] In[6] sind die Zusatzkriterien beschrieben, die ein Raum mit Konvergenz im Sinne von Fréchet erfüllen muss, damit diese Konvergenz eindeutig durch eine Topologie erzeugt werden kann.
Beispiele sind Grenzwerte von Teilmengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T} einer Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} mit folgender Definition der Konvergenz:[7]
- Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{T_n\}_{n\in\N}} eine Folge von Teilmengen der Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} , dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle \lim_{n\in\N}T_n = L} genau dann, wenn es zu jedem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\in L} ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_0\in\N} gibt mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\in T_n} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n\ge n_0} und zu jedem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y\in M\setminus L} ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_0\in\N} gibt mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y\not\in T_m} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m\ge m_0~.} Ein Beispiel für einen solchen Grenzwert ist die Cantor-Menge.
Allgemeines für die Praxis (Iterationsverfahren)
Oft weiß man nicht von vornherein, ob ein Verfahren konvergiert, z. B., wenn bei einem Iterationsverfahren zu einem Eingangswert einer Größe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I} in bestimmter Weise eine Korrektur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta I} berechnet und der so gewonnene Wert als neuer Eingangswert genommen wird (also bei einer Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_n \to I_n + \delta I_n =: I_{n+1} \to \dotsc, n=1, \dotsc} ). D. h., man betrachtet eine offene Situation, in der weder bekannt ist, ob ein notwendiges Kriterium verletzt ist (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow } Nichtkonvergenz), noch, ob eines der hinreichenden Kriterien erfüllt ist (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow } Konvergenz). In einem solchen Fall empfiehlt es sich, pragmatisch vorzugehen (d. h. zum Beispiel mit dem Cauchy-Kriterium) und das Verfahren einfach „hinreichend nahe“ an dem vermuteten Konvergenzpunkt durchzuführen, wobei in der Praxis nicht bekannt zu sein braucht, was „hinreichend nahe“ quantitativ bedeutet.
Siehe auch
Belege
- ↑ Bernard Bolzano: Der binomische Lehrsatz und als Folgerung aus ihm der polynomische, und die Reihen, die zur Berechnung der Logarithmen und Exponentialgrössen dienen, genauer als bisher erwiesen. Enders, Prag 1816 (eudml.org).
- ↑ Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon} -Umgebung einer reellen Zahl ist ein besonderer Fall eines allgemeineren mathematischen Begriffs der Umgebung.
- ↑ Gabriele Adams, Hermann-Josef Kruse, Diethelm Sippel, Udo Pfeiffer: Mathematik zum Studieneinstieg. 6. Auflage. Springer, 2013, ISBN 978-3-642-40056-8, S. 79.
- ↑ Robert B. Ash: Real Analysis and Probability. Academic Press, New York 1972, ISBN 0-12-065201-3, S. 371 f., Comments A.24.
- ↑ J. Cigler, H.-C. Reichel: Topologie. Eine Grundvorlesung. Bibliographisches Institut, Mannheim 1978, ISBN 3-411-00121-6, S. 88, Aufgabe 6.
- ↑ John L. Kelley: General Topology. Springer Verlag, 1997, ISBN 0-387-90125-6.
- ↑ Sidney I. Resnick: A Probability Path. Birkhäuser, Boston 1998, ISBN 3-7643-4055-X.