Gammafunktion

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Unvollständige Gammafunktion)
Graph der Gammafunktion im Reellen
Komplexe Gammafunktion: Die Helligkeit entspricht dem Betrag, die Farbe dem Argument des Funktionswerts. Zusätzlich sind Höhenlinien konstanten Betrags eingezeichnet.
Betrag der komplexen Gammafunktion

Die Eulersche Gammafunktion, auch kurz Gammafunktion oder Eulersches Integral zweiter Gattung, ist eine der wichtigsten speziellen Funktionen und wird in den mathematischen Teilgebieten der Analysis und der Funktionentheorie untersucht. Sie wird heute durch ein , den griechischen Großbuchstaben Gamma, bezeichnet und ist eine transzendente meromorphe Funktion mit der Eigenschaft

für jede natürliche Zahl , wobei mit die Fakultät bezeichnet wird. Die Motivation zur Definition der Gammafunktion war, die Fakultätsfunktion auf reelle und komplexe Argumente erweitern zu können. Der Schweizer Mathematiker Leonhard Euler löste im Jahr 1729 diese Fragestellung und definierte die Gammafunktion mittels eines unendlichen Produktes. Heute wird die Gammafunktion oft mittels einer Integraldarstellung definiert, die ebenfalls auf Euler zurückgeht.

Die Gammafunktion liegt der Gamma-Wahrscheinlichkeitsverteilung zugrunde.

Einordnung ohne mathematisches Vorwissen

Eine mathematische Funktion ist im Grunde wie eine Rechenmaschine. Man gibt einen Wert in die Funktion ein, und diese liefert dann ein Ergebnis in Abhängigkeit vom Eingabewert, zumindest theoretisch. Damit ist gemeint, dass die Funktion an sich nicht rechnet, sondern meist nur eine Rechenvorschrift formelhaft festhält. Einfaches Beispiel für eine Funktion ist die quadratische Funktion, welche die Eingabe mit sich selbst multipliziert. Formelhaft schreibt man dies als . Somit ordnet die quadratische Funktion beispielsweise der Zahl den Wert zu. Rechnet man dies aus, ergibt sich , also .

Die Gammafunktion fußt auf einer Vorschrift, die auch als Fakultät bekannt ist. Diese ordnet einer natürlichen Zahl das Produkt aller natürlichen Zahlen bis zu dieser Zahl zu. Bezeichnet wird die Fakultät mit dem Symbol des Ausrufezeichens. Also gilt zum Beispiel

Es galt innerhalb der Mathematik als Problem, ob sich diese Vorschrift auch auf Zahlen anderer Art erweitern ließe. Konkret bedeutet das:

  • Lassen sich Fakultäten auch für beliebige rationale, reelle, komplexe Zahlen berechnen? Wie in etwa könnte man sich vorstellen?
  • Falls solche „universelle“ Vorschriften gefunden werden, welche mathematischen Eigenschaften können ihnen gegeben werden? Zeichnet sich eine dieser Vorschriften als ganz besonders natürlich und strukturell aus? Ist diese besondere Vorschrift eindeutig bestimmt, also „die eine“ verallgemeinerte Fakultät?

Die Antwort auf diese Fragen liefert die Gammafunktion. Für beliebige Werte liefert , also gilt zum Beispiel Die Verschiebung um 1 von der oben erwähnten Fakultät ist auf eine Konvention aus dem 19. Jahrhundert zurückzuführen. Die Strategie der Verallgemeinerung basiert auf der Beobachtung, dass aus einer vorherigen Fakultät durch Hinzunahme eines weiteren Faktors eine weitere Fakultät gewonnen wird. So gilt etwa und ganz allgemein . Demnach sollten sämtliche Werte der Gammafunktion mittels in Relation stehen. Stellt man weitere wichtige Bedingungen, wie Differenzierbarkeit, an , so kann diese schließlich eindeutig definiert werden, womit „die“ verallgemeinerte Fakultät gefunden ist.

Es gilt dann mit der Kreiszahl . Dieser Zusammenhang lässt sich über die Normalverteilung von Gauß erklären.

Geschichte

Als früheste Definition der Gammafunktion gilt die in einem Brief von Daniel Bernoulli an Christian Goldbach vom 6. Oktober 1729 gegebene:[1][2]

für unendlich große , entsprechend heutiger Notation oder . Wenige Tage später, am 13. Oktoberjul. / 24. Oktober 1729greg., beschrieb Euler ebenfalls in einem Brief an Goldbach die ähnliche, etwas einfachere Formel[3]

die Gauß 1812 für den allgemeineren Fall komplexer Zahlen wiederentdeckte[4] (die genannten Briefe wurden erst 1843 herausgegeben). Sie nähert sich mit wachsendem dem wahren Wert für oder . Am 8. Januar 1730 beschrieb Euler in einem Brief an Goldbach folgendes Integral zur Interpolation der Fakultätsfunktion,[5] das er am 28. November 1729 der St. Petersburger Akademie vorgestellt hatte:[6]

    in heutiger Notation:    

Diese Definition wurde von Euler später bevorzugt verwendet[7] und geht durch die Substitution in die Form

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(n+1) = \int_0^\infty t^n \mathrm{e}^{-t} \mathrm dt}

über. Euler entdeckte dieses Integral bei der Untersuchung eines Problems aus der Mechanik, bei dem die Beschleunigung eines Teilchens betrachtet wird.

Adrien-Marie Legendre führte 1809 die griechische Majuskel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma} (Gamma) als Funktionssymbol ein.[8][9] Gauß verwendete 1812 das Funktionssymbol Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Pi} (Pi) so, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Pi(x) = \Gamma(x+1)} und somit auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Pi(n) = n!} für nichtnegative ganzzahlige Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} gilt. Es setzte sich jedoch nicht durch; heute wird Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Pi} als Symbol für ein Produkt benutzt (analog zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma} für eine Summe).

Definition und elementare Darstellungsformen

Es gibt in der Literatur keine einheitliche Definition für die Gammafunktion.

Häufig wird das Eulersche Integral zweiter Gattung gegeben. Ein Nachteil ist, dass dieses Integral nicht überall konvergiert. Somit ist eine globale Berechnung mittels dieser Definition nur indirekt möglich. Für komplexe Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} mit positivem Realteil ist die Gammafunktion damit das uneigentliche Integral

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(z) = \int_0^\infty t^{z-1} {\mathrm e}^{-t} \mathrm dt.}

Die dadurch definierte Funktion ist holomorph, da das Integral (wegen des schnellen Abfallens der Exponentialfunktion) auf kompakten Mengen gleichmäßig konvergiert. Dies ermöglicht den Einsatz des Weierstraßschen Konvergenzsatzes. Mittels meromorpher Fortsetzung lässt sich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(z) } schließlich für alle Werte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Complex \setminus \{0, -1, -2, \dotsc\} } berechnen.

Eine andere Darstellung mittels eines Produktes motiviert die Verallgemeinerung der Fakultät auf direkte Weise. Sie ist gegeben durch:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(z) = \lim_{n \to \infty} \frac{n!\,n^z}{z(z+1)(z+2) \dotsm (z+n)}.}

In seinem Buch Number Theory. Analytic and modern tools gibt Henri Cohen eine Definition mittels der Hurwitzschen Zeta-Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \zeta(s,z)} . Als Begründung hierfür wird eine „einfache Möglichkeit der Verallgemeinerung“ und die „Betonung wichtiger Formeln“ angegeben. Es gilt demnach für komplexe Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} mit positivem Realteil

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(z) = \exp(\zeta'(0,\ z) - \zeta'(0,\ 1)), }

wobei die Ableitung bezüglich der ersten Variablen gebildet ist.

Globale Eigenschaften

Funktionalgleichung und Meromorphie

Die Gammafunktion erfüllt in ihrem Definitionsbereich für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z } die Funktionalgleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z \; \Gamma(z) = \Gamma(z+1). }

Mittels dieser Relation ist eine induktive Fortsetzung (beispielsweise des Eulerschen Integrals) möglich. Es gilt für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n = 0, 1, 2, \dotsc}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(z) = \frac{\Gamma(z+n+1)}{z(z+1)(z+2) \cdots (z+n)}.}

Nullstellen und Polstellen

Aus der vorherigen Darstellung kann gefolgert werden, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(z)} zu einer auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Complex} meromorphen Funktion fortgesetzt werden kann, die Pole an den Stellen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z = 0, -1, -2, \dotsc} besitzt. Alle Pole sind einfach und besitzen das Residuum

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Res}_{-n}\Gamma = \frac{(-1)^n}{n!}} ,

hierbei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \in \mathbb N_0} . Nullstellen besitzt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma} keine. Das macht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma^{-1}} zu einer ganzen Funktion mit ausschließlich einfachen Nullstellen.

Der Satz von Hölder

Der Satz von Hölder (Otto Hölder 1886)[10] ist ein Negativresultat und besagt, dass die Gammafunktion keine algebraische Differentialgleichung erfüllt, deren Koeffizienten rationale Funktionen sind. Das heißt, es gibt keine Differentialgleichung der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(z, y(z), y'(z), \dotsc, y^{(n)}(z)) = 0} mit einer nichtnegativen ganzen Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} und einem Polynom Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \neq 0} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y, y', \dotsc, y^{(n)}} , dessen Koeffizienten rationale Funktionen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} sind, und der Lösung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y = \Gamma} .[11]

Axiomatische Charakterisierung

Fortsetzung der Fakultät

Die Bedingungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(1) = 1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(x+1) = x \cdot G(x)} , die die Fakultät für natürliche Zahlen eindeutig beschreiben, werden auch von anderen analytischen Funktionen als der Gammafunktion erfüllt. Für positive Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} erfüllt beispielsweise die Funktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(x) = \Gamma(x) \cdot \bigl(1 + c\,\sin(2\pi x)\bigr)}

für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0<c<1} die charakteristischen Bedingungen der Gammafunktion. Weierstraß fügte 1854 daher die notwendige und hinreichende Bedingung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty} \frac{G(x+n)}{G(n)\,n^x} = 1}

hinzu,[12][13] womit aber die Suche nach einer möglichst elementaren oder natürlichen charakterisierenden Eigenschaft nicht beendet war.[14] Emil Artin diskutierte 1931 die mögliche Kennzeichnung durch Funktionalgleichungen.[15]

Der Satz von Bohr-Mollerup

Der Satz von Bohr-Mollerup (Harald Bohr und Johannes Mollerup 1922)[16][17] erlaubt eine einfache Charakterisierung der Gammafunktion:

Eine Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G\colon\mathbb R_{>0}\to\mathbb R_{>0}} ist in diesem Bereich genau dann gleich der Gammafunktion, wenn gilt:
  1. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(1) = 1,}
  2. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(x+1) = x \cdot G(x),}
  3. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} ist logarithmisch konvex, das heißt, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\mapsto\log G(x)} ist eine konvexe Funktion.

Diese Axiome sind bei Nicolas Bourbaki der Ausgangspunkt für die Darstellung der Theorie der Gammafunktion.[18]

Der Satz von Wielandt

Der Satz von Wielandt über die Gammafunktion (Helmut Wielandt 1939)[19][20] charakterisiert die Gammafunktion als holomorphe Funktion und besagt:

Eine holomorphe Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} , definiert auf einem Gebiet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D} , das den Streifen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S = \{ x\in\mathbb{C} \mid 1 \leq \operatorname{Re}(x) < 2 \}} enthält, ist genau dann gleich der Gammafunktion auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D} , wenn gilt:
  1. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(1) = 1,}
  2. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(x+1) = x \cdot G(x),}
  3. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |G|} ist auf dem Streifen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} beschränkt, das heißt, es existiert ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c > 0} , sodass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |G(x)|<c} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} .

Genauer gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\Gamma(x)| \leq \Gamma(\operatorname{Re}(x))} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Re}(x) > 0} .

Weitere Darstellungsformen

Neben der Darstellung der Gammafunktion aus der Definition gibt es noch andere äquivalente Darstellungen. Eine direkte Definition von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(x)} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in \mathbb{C} \setminus \{ 0, -1, -2, \dotsc \}} gibt die Produktdarstellung der Gammafunktion nach Gauß,[21][4]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(x) = \lim_{n \to \infty} \frac{n!\,n^x}{x(x+1)(x+2) \dotsm (x+n)},}

die für positive reelle Zahlen bereits von Euler 1729 angegeben wurde.[3] Daraus abgeleitet ist die Darstellung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1 / \Gamma} als Weierstraß-Produkt:[22]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1 / \Gamma(x) = x \cdot \prod_{n=1}^\infty \left(1+\frac{x}{n}\right) \mathrm{e}^{-x \log(\frac{n+1}{n})} = x \cdot \mathrm{e}^{\gamma\,x} \cdot \prod_{n=1}^\infty \left(1+\frac{x}{n}\right) \mathrm{e}^{-x/n}}

mit der Euler-Mascheroni-Konstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma = \lim_{n \to \infty} \bigl((\tfrac{1}{1} + \tfrac {1}{2} + \tfrac {1}{3} + \dotsb + \tfrac{1}{n}) - \log n\bigr)} . Das zweite Produkt wird üblicherweise als Weierstraßsche Darstellung bezeichnet, Karl Weierstraß verwendete jedoch nur das erste.[23]

Die Integraldarstellung aus der Definition geht ebenfalls auf Euler 1729 zurück,[6] sie gilt allgemeiner für komplexe Zahlen mit positivem Realteil:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(x) = \int_0^\infty t^{x-1} \mathrm{e}^{-t}\,\mathrm dt,}     wenn     Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Re}(x) > 0.}

Durch die Zerlegung dieses Integrals folgerte E. F. Prym 1876[24] eine in ganz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{C} \setminus \{0, -1, -2, -3, \dotsc \}} gültige Darstellung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(x) = \sum_{n=0}^\infty \frac{(-1)^n}{n!(n+x)} + \int _1^\infty t^{x-1}e^{-t} \mathrm dt}

Eine andere Variante der Eulerschen Integraldarstellung[25] gibt es für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in \mathbb{C}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 < \operatorname{Re}(x) < 1} :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(x) = \mathrm{e}^{\pi \mathrm {i} x/2} \int_0^\infty t^{x-1} \mathrm{e}^{-\mathrm{i} t}\,\mathrm dt}

Aus dieser Darstellung lassen sich zum Beispiel auf elegante Weise die Fresnelschen Integralformeln ableiten.

Ernst Eduard Kummer gab 1847 die Fourierentwicklung der logarithmischen Gammafunktion an:[26]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \log\Gamma(x) = \left(\tfrac{1}{2}-x\right) \bigl(\gamma + \log(2\pi)\bigr) + \frac{1}{2} \log\frac{\pi}{\sin(\pi x)} + \frac{1}{\pi} \sum_{k=2}^\infty \frac{\log k}{k} \sin(2\pi k x)}     für     Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 < x < 1}

Sie heißt auch Kummersche Reihe. Bereits 1846 fand Carl Johan Malmstén eine ähnliche Reihe:[27][28]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \log\frac{\Gamma(\tfrac{1}{2}+x)}{\Gamma(\tfrac{1}{2}-x)} = -2 x\,\bigl(\gamma + \log(2\pi)\bigr) + \frac{2}{\pi} \sum_{k=2}^\infty (-1)^{k} \frac{\log k}{k} \sin(2\pi k x)}     für     Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -\tfrac{1}{2} < x < \tfrac{1}{2}}

Funktionalgleichungen und spezielle Werte

Grundlegende Funktionalgleichung

Die Gammafunktion genügt der Funktionalgleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(x+1) = x \cdot \Gamma(x)}     mit     Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(1) = 1.}

Elementare Gammafunktionswerte von Brüchen

Im Folgenden wird Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(\tfrac{1}{2})} ermittelt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma\left(\tfrac{1}{2}\right) = \int_0^\infty x^{-1/2} \exp(-x)\,\mathrm dx = 2\int_0^\infty \exp\left(-x^2\right)\,\mathrm dx }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left[\int_0^\infty \exp\left(-x^2\right)\,\mathrm dx\right]^2 = \int_0^\infty 2\exp\left(-x^2\right)\left[\int_0^1 x\exp(-x^2y^2)\,\mathrm dy\right]\,\mathrm dx = \int_0^\infty\int_0^1 2x\exp\left(-x^2\right)\exp\left(-x^2y^2\right)\,\mathrm dy\,\mathrm dx = }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = \int_0^1\int_0^\infty 2x\exp\left(-x^2\right)\exp\left(-x^2y^2\right)\,\mathrm dx\,\mathrm dy = \int_0^1\int_0^\infty 2x\exp\left[-x^2(y^2+1)\right]\,\mathrm dx\,\mathrm dy = \int_0^1 \frac{1}{y^2+1}\mathrm dy = \frac{\pi}{4} }

Daraus folgt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma\left(\tfrac{1}{2}\right) = \sqrt{\pi} }

Alternativ kann dieser Gammafunktionswert mit dem Wallisschen Produkt ermittelt werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \prod_{k=1}^{\infty} \frac{4k^2}{4k^2 - 1} = \frac{\pi}{2}}

Dieses Produkt lässt sich auf diese Weise umformen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \prod_{k = 1}^{\infty} \frac{4k(k+1)}{(2k+1)^2} = \frac{\pi}{4}}

Folgender Bruch hat folgenden Grenzwert:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \rightarrow \infty} \frac{\Gamma(n+1)\sqrt{n+1}}{\Gamma(n+3/2)} = \lim_{n \rightarrow \infty} \frac{\sqrt{\Gamma(n+1)\Gamma(n+2)}}{\Gamma(n+3/2)} = 1 }

Für alle n ∈ ℕ gelten folgende Ausdrücke:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(n+1)\sqrt{n+1} = \prod_{k = 1}^{n} \sqrt{k(k+1)} }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{1}{\Gamma(n+3/2)} = \frac{1}{\Gamma(3/2)} \prod_{k = 1}^{n} \frac{2}{2k+1} }

Folglich gilt diese Formel:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \rightarrow \infty} \left[\prod_{k = 1}^{n} \sqrt{k(k+1)} \frac{1}{\Gamma(3/2)} \prod_{k = 1}^{n} \frac{2}{2k+1}\right] = 1 }

Die Formel wird nach Γ(3/2) aufgelöst:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(3/2) = \lim_{n \rightarrow \infty} \left[\prod_{k = 1}^{n} \sqrt{k(k+1)} \prod_{k = 1}^{n} \frac{2}{2k+1}\right] = }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = \lim_{n \rightarrow \infty} \left[\prod_{k = 1}^{n} \sqrt{k(k+1)} \frac{2}{2k+1}\right] = \prod_{k = 1}^{\infty} \sqrt{k(k+1)} \frac{2}{2k+1} = }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = \sqrt{\prod_{k = 1}^{\infty} \frac{4k(k+1)}{(2k+1)^2}} = \sqrt{\frac{\pi}{4}} = \frac{1}{2}\sqrt{\pi} }

Daraus folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(1/2) = 2\Gamma(3/2) = \sqrt{\pi} }

Mit dem Ergänzungssatz der Gammafunktion (Euler 1749)[29][30]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(x) \cdot \Gamma(1-x) = \frac{\pi}{\sin(\pi x)}}     für     Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in \mathbb{C} \setminus \mathbb{Z}}

erhält man ebenso Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(\tfrac{1}{2}) = \sqrt{\pi} = 1{,}77245\,38509\,05516\,02729 \dotso} (Folge A002161 in OEIS) sowie

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(-n+\tfrac{1}{2}) = \frac{n!\,(-4)^n}{(2n)!}\,\sqrt{\pi}}     und     Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(n+\tfrac{1}{2}) = \frac{(2n)!}{n!\,4^n}\,\sqrt{\pi}}     für     Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n = 0, 1, 2, \dotsc}

Mit allgemeiner gewähltem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} wird aus der letzten Formel die Legendresche Verdopplungsformel (Legendre 1809)[31]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma\left(\frac{x}{2}\right) \cdot \Gamma\left(\frac{x+1}{2}\right) = \frac{\sqrt{\pi}}{2^{x-1}} \cdot \Gamma(x)}     für     Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in \mathbb{C} \setminus \{ 0, -1, -2, \dotsc \}.}

Diese ist ein Spezialfall der Gaußschen Multiplikationsformel (Gauß 1812)[32]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma\left(\frac{x}{n}\right) \cdot \Gamma\left(\frac{x+1}{n}\right) \cdots \Gamma\left(\frac{x+n-1}{n}\right) = \frac{(2\pi)^{(n-1)/2}}{n^{\,x-1/2}}\cdot\Gamma(x)}     für     Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n = 1,\,2,\,3,\,\ldots}     und     Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in \mathbb{C} \setminus \{ 0, -1, -2, \dotsc \}.}

Herleitungen elliptischer Gammafunktionswerte von Brüchen

Gregory Chudnovsky zeigte 1975, dass jede der Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(1/6)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(1/4)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(1/3)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(2/3)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(3/4)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(5/6)} transzendent und algebraisch unabhängig von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi} ist. Sie sind nicht elementar darstellbar, aber können sehr wohl über algebraische Kombinationen von vollständigen elliptischen Integralen erster und zweiter Art dargestellt werden. Hingegen ist beispielsweise von dem Funktionswert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(1/5) = 4{,}59084\,37119\,98803\,05320\,\dotso} (Folge A175380 in OEIS) nicht einmal bekannt, ob er irrational ist. Und bei diesem Wert ist eine Darstellung aus einer algebraischen Kombination von vollständigen elliptischen Integralen erster und zweiter Art und aus algebraischen Vorfaktoren als einzige Komponenten in der betroffenen Darstellung nicht möglich.[33][34]

Mit der lemniskatischen Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varpi} gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma\left(\frac{1}{4}\right) = 4\cdot\Gamma\left(\frac{5}{4}\right) = \sqrt{2 \varpi\,\sqrt{2 \pi}} = 3{,}62560\,99082\,21908\,31193 \dotso} (Folge A068466 in OEIS).

Denn es gilt Folgendes:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma\left(\frac{5}{4}\right)^2 = [\int_0^\infty \exp(-x^4)\,\mathrm dx]^2 = \int_0^1\int_0^\infty 2x\exp(-x^4)\exp(-x^4y^4)\,\mathrm dx\,\mathrm dy = \int_0^1\int_0^\infty 2x\exp[-x^4(y^4+1)]\,\mathrm dx\,\mathrm dy = }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = \int_0^1\int_0^\infty \exp[-x^2(y^4+1)]\,\mathrm dx\,\mathrm dy = \int_0^1 \frac{1}{\sqrt{y^4+1}}\mathrm{d}y\int_0^\infty \exp(-x^2)\,\mathrm dx = \frac{\varpi}{2\sqrt{2}}\int_0^\infty \exp(-x^2)\,\mathrm dx = \frac{\varpi\sqrt{\pi}}{4\sqrt{2}} }

Hierbei gilt folgende Formel über den Arcussinus lemniscatus: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{1}{\sqrt{y^4+1}} = \frac{\mathrm{d}}{\mathrm{d}y}\sqrt{2}\cdot\mathrm{arcsl}\left(\frac{y}{\sqrt{\sqrt{y^4+1}+1}}\right) }

Wegen des Ergänzungssatzes gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma\left(\frac{3}{4}\right) = \sqrt{2}\pi/\Gamma\left(\frac{1}{4}\right) = \frac{\sqrt[4]{\pi^3}}{\sqrt[4]{2}\sqrt{\varpi}} = \sqrt[4]{\pi}\sqrt{2E(\frac{1}{\sqrt{2}}) - K(\frac{1}{\sqrt{2}})}}

Hierbei ist K das vollständige elliptische Integral erster Ordnung und E das vollständige elliptische Integral zweiter Ordnung.

Die Gammafunktionswerte der Drittel können ebenso mit Hilfe elliptischer Integrale erster und zweiter Ordnung dargestellt werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma\left(\frac{1}{3}\right) = 3\cdot\Gamma\left(\frac{4}{3}\right) = \frac{2^{7/9}}{3^{1/12}}{\pi}^{1/3}{K[\sin(\frac{\pi}{12})]}^{1/3}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma\left(\frac{2}{3}\right) = \frac{3}{2}\cdot\Gamma\left(\frac{5}{3}\right) = \frac{2^{2/9}}{3^{5/12}}{\pi}^{2/3}{K[\sin(\frac{\pi}{12})]}^{-1/3} = \frac{2^{5/9}}{3^{5/12}}{\pi}^{1/3}[{2\sqrt{3}E[\sin(\frac{\pi}{12})]-(\sqrt{3}+1)K[\sin(\frac{\pi}{12})]}]^{1/3}}

Denn es gilt Folgendes:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma\left(\frac{4}{3}\right)^2 = [\int_0^\infty \exp(-x^3)\,\mathrm dx]^2 = \int_0^1\int_0^\infty 2x\exp(-x^3)\exp(-x^3y^3)\,\mathrm dx\,\mathrm dy = }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = \int_0^1\int_0^\infty 2x\exp[-x^3(y^3+1)]\,\mathrm dx\,\mathrm dy = \int_0^1 \frac{1}{(y^3+1)^{2/3}}\mathrm{d}y\int_0^\infty 2x\exp(-x^3)\,\mathrm dx = \frac{2^{1/3}}{3^{3/4}}K[\sin(\frac{\pi}{12})]\Gamma\left(\frac{5}{3}\right) }

Wegen der Eulerschen Formel des Ergänzungssatzes gilt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma\left(\frac{4}{3}\right)\Gamma\left(\frac{5}{3}\right) = \frac{4\pi}{9\sqrt{3}} }

Generell gilt folgende Formel für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n\in\N} :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\Gamma(1+1/n)^2}{\Gamma(1+2/n)} = \int_{0}^{1} \frac{1}{(x^n + 1)^{2/n}} \mathrm{d}x = \int_{0}^{1} \frac{1}{2^{2/n}\sqrt{1 - x^n}} \mathrm{d}x}

Im letzten Schritt wird auf folgende Weise substituiert: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \mapsto \frac{x}{(1+\sqrt{1-x^n})^{2/n}}}

Auf diese Weise lassen sich alle Gamma-Funktionswerte von rationalen Zahlen ermitteln.

Liste elliptischer Gammafunktionswerte

Folgende weitere Funktionswerte der Gammafunktion lassen sich mit elliptischen Integralen erster und zweiter Ordnung darstellen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(1/6) = 2^{11/9} 3^{1/3} \pi^{1/6} K[\sin(\frac{\pi}{12})]^{2/3}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(5/6) = 2^{4/9} 3^{-1/3} \pi^{1/6} \{{2\sqrt{3}E[\sin(\frac{\pi}{12})]-(\sqrt{3}+1)K[\sin(\frac{\pi}{12})]}\}^{2/3}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(1/8) = 2^{17/8} \pi^{1/8} K(\frac{1}{\sqrt{2}})^{1/4} K(\sqrt{2}-1)^{1/2}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(3/8) = 2^{11/8} (\sqrt{2}-1)^{1/2} \,\pi^{1/8} [2E(\frac{1}{\sqrt{2}}) - K(\frac{1}{\sqrt{2}})]^{1/4} K(\sqrt{2}-1)^{1/2}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(5/8) = 2^{5/8} \pi^{1/8} K(\frac{1}{\sqrt{2}})^{1/4} [\sqrt{2}E(\sqrt{2}-1) - K(\sqrt{2}-1)]^{1/2}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(7/8) = 2^{-1/8} (\sqrt{2}+1)^{1/2} \pi^{1/8} [2E(\frac{1}{\sqrt{2}}) - K(\frac{1}{\sqrt{2}})]^{1/4} [\sqrt{2}E(\sqrt{2}-1) - K(\sqrt{2}-1)]^{1/2}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(1/12) = 2^{55/36} 3^{7/24} (\sqrt{3}+1)^{1/2} \pi^{1/12} K(\frac{1}{\sqrt{2}})^{1/2} K[\sin(\frac{\pi}{12})]^{1/3}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(5/12) = 2^{29/36} 3^{-1/24} (\sqrt{3}-1)^{1/2} \pi^{1/12} K(\frac{1}{\sqrt{2}})^{1/2} \{{2\sqrt{3}E[\sin(\frac{\pi}{12})]-(\sqrt{3}+1)K[\sin(\frac{\pi}{12})]}\}^{1/3}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(7/12) = 2^{19/36} 3^{1/24} (\sqrt{3}-1)^{1/2} \pi^{1/12} [2E(\frac{1}{\sqrt{2}}) - K(\frac{1}{\sqrt{2}})]^{1/2} K[\sin(\frac{\pi}{12})]^{1/3}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(11/12) = 2^{-7/36} 3^{-7/24} (\sqrt{3}+1)^{1/2} \pi^{1/12} [2E(\frac{1}{\sqrt{2}}) - K(\frac{1}{\sqrt{2}})]^{1/2} \{{2\sqrt{3}E[\sin(\frac{\pi}{12})]-(\sqrt{3}+1)K[\sin(\frac{\pi}{12})]}\}^{1/3}}

Weitere Beziehungen zwischen der Gammafunktion und den elliptischen Integralen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\Gamma(21/20)^2}{\Gamma(11/10)} = \int_{0}^{1} \frac{1}{\sqrt[10]{x^{20}+1}} \,\mathrm{d}x = 2^{9/10} 5^{-1/2} \sin(\frac{\pi}{5})^{1/2} \cos(\frac{\pi}{20}) K\{\sin[\frac{1}{2}\arcsin(\sqrt{5}-2)]\}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\Gamma(23/20)^2}{\Gamma(13/10)} = 2^{27/10} 5^{-5/4} 3 \sin(\frac{\pi}{5})^{5/2} \cos(\frac{3\pi}{20}) K\{\sin[\frac{1}{2}\arcsin(\sqrt{5}-2)]\}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\Gamma(25/24)^2}{\Gamma(13/12)} = \int_{0}^{1} \frac{1}{\sqrt[12]{x^{24}+1}} \,\mathrm{d}x = 2^{-13/12} 3^{-1/4} (\sqrt{3}-1) (\sqrt{2}+1) K\{\tan[\frac{1}{4}\arcsin(\frac{1}{3})]\}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\Gamma(29/24)^2}{\Gamma(17/12)} = 2^{-17/12} 3^{-3/4} 5(\sqrt{3}-1) K\{\tan[\frac{1}{4}\arcsin(\frac{1}{3})]\}}

Kurvendiskussion

Die Steigung der Gammafunktion an der Stelle 1 ist gleich dem Negativen der Euler-Mascheroni-Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma} :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma'(1) = -\gamma}

Die Gammafunktion hat an den Stellen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=-n\ \left(n = 0, 1, 2, \dotsc\right)} Pole erster Ordnung. Aus der Funktionalgleichung erhält man für die Residuen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Res}_{x=-n} \Gamma(x) = \frac{(-1)^n}{n!}.}

Alternativ lassen sie sich direkt an der Formel

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(z)= \sum_{n=0}^\infty \frac{(-1)^n}{n!}\frac{1}{z+n} + \int_1^\infty t^{z-1} e^{-t} \mathrm dt}

ablesen. Da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma} keine Nullstellen hat, ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1 / \Gamma} eine ganze Funktion.

Zusammenhang mit der Riemannschen ζ-Funktion

Bernhard Riemann brachte 1859 die Gammafunktion mit der Riemannschen ζ-Funktion über die Formel

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(s)\,\zeta(s) = \int_0^\infty \frac{x^{s-1}}{\mathrm{e}^x - 1}\,\mathrm dx}

und die folgende Feststellung in Beziehung:[35] Der Ausdruck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(s/2)\,\pi^{-s/2}\,\zeta(s)} „bleibt ungeändert, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1-s} verwandelt wird“, also

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(s/2)\,\pi^{-s/2}\,\zeta(s) = \Gamma\bigl((1-s)/2\bigr)\,\pi^{-(1-s)/2}\,\zeta(1-s).}

Näherungsweise Berechnung

Stirlingsche Formel

Näherungswerte der Gammafunktion für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x > 0} liefert unter anderem die Stirlingsche Formel, es gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(x) = \sqrt{2\pi}\,x^{x-1/2}\,\mathrm{e}^{-x}\,\mathrm{e}^{\mu(x)}}     mit     Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 < \mu(x) < 1 / (12x).}

Rekursive Näherung

Aus der Funktionalgleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(z+1) = z \cdot \Gamma(z),}

die eine Art Periodizität beinhaltet, können aus bekannten Funktionswerten in einem Streifen der Breite 1 in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Re}(z)} die Werte in jedem anderen entsprechenden Streifen rekursiv berechnet werden. Mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \log\Gamma(z) = \log\Gamma(z+1) - \log z}

kann man von einem Streifen auf den benachbarten mit kleinerem Realteil gelangen, und das Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} -fach.[36] Da es für großes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |z|} sehr gute Näherungen für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \log \Gamma(z)} gibt, kann deren Genauigkeit in Bereiche übertragen werden, in denen direkte Anwendung der betreffenden Näherung nicht anzuraten wäre. Nach Rocktäschel[37] empfiehlt sich, wie schon von Carl Friedrich Gauß bemerkt, die aus der Stirling-Formel abgeleitete asymptotische Entwicklung in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Ro}(z) := \frac{1}{2} \log(2\pi) + \left(z-\frac{1}{2}\right) \left(\log\left(z-\frac{1}{2}\right) - 1\right) \sim \log\Gamma(z)} .

Diese hat zwar im Nahbereich bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z = \tfrac{1}{2}} eine Irregularität, ist aber schon für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |z| > 10} brauchbar. Mit dem Korrekturterm Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -\tfrac{1}{24}\left(z-\tfrac{1}{2}\right)^{-1}} wird ihr Fehler auf die Größenordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{O}(z^{-3})} für unbeschränkt wachsendes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |z|} verringert.

Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} -fache Anwendung dieser Näherung führt auf

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \log\Gamma(z) \approx \operatorname{Ro}(z+m) - \sum_{k=0}^{m-1} \log(z+k).}

Den komplexen Logarithmus berechnet man über die Polardarstellung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} . Für die meisten Anwendungen, etwa in der Wellenausbreitung,[38] sollte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m=100} ausreichen.

Unvollständige Gammafunktion

In der Literatur wird dieser Begriff, im Hinblick auf Integrationsgrenzen und Normierung (Regularisierung), nicht einheitlich verwendet.

Häufige Notationen sind:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma(a,x) = \int_0^x t^{a-1} \mathrm{e}^{-t}\,\mathrm dt}     unvollständige Gammafunktion der oberen Grenze
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(a,x) = \int_x^\infty t^{a-1} \mathrm{e}^{-t}\,\mathrm dt}     unvollständige Gammafunktion der unteren Grenze
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{P}(a,x) = \frac{\gamma(a,x)}{\Gamma(a)}}     regularisierte (unvollständige) Gammafunktion der oberen Grenze
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Q}(a,x) = \frac{\Gamma(a,x)}{\Gamma(a)}}     regularisierte (unvollständige) Gammafunktion der unteren Grenze

Spricht man von einer regularisierten Gammafunktion, so impliziert dies schon, dass sie unvollständig ist.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(a,x,y) = \int_x^y t^{a-1} \mathrm{e}^{-t}\,\mathrm dt}     oder     Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma(a,x,y) = \frac{1}{\Gamma(a)}\int_x^y t^{a-1} \mathrm{e}^{-t}\,\mathrm dt}

steht für die verallgemeinerte unvollständige Gammafunktion.

Verallgemeinerung

Eine Verallgemeinerung ist die multivariate Gammafunktion, welche in der Wishart-Verteilung anzutreffen ist.

Siehe auch

Literatur

  • Niels Nielsen: Handbuch der Theorie der Gammafunktion. B. G. Teubner, Leipzig 1906 (im Internetarchiv, dito, dito).
  • E. T. Whittaker, G. N. Watson: The Gamma function. Kapitel 12 in A course of modern analysis. Cambridge University Press, 4. Ausgabe 1927; Neuauflage 1996, ISBN 0-521-58807-3, S. 235–264 (englisch; im Internetarchiv).
  • Emil Artin: Einführung in die Theorie der Gammafunktion. B. G. Teubner, Leipzig 1931; The Gamma function. Holt, Rinehart and Winston, New York 1964 (englische Übersetzung von Michael Butler).
  • Friedrich Lösch, Fritz Schoblik: Die Fakultät (Gammafunktion) und verwandte Funktionen. Mit besonderer Berücksichtigung ihrer Anwendungen. B. G. Teubner, Leipzig 1951.
  • Philip J. Davis: Leonhard Euler’s integral: A historical profile of the gamma function. The American Mathematical Monthly 66, 1959, S. 849–869 (englisch; 1963 mit dem Chauvenet-Preis ausgezeichnet; bei MathDL).
  • Konrad Königsberger: Die Gammafunktion. Kapitel 17 in Analysis 1. Springer, Berlin 1990; 6. Auflage 2003, ISBN 3-540-40371-X, S. 351–360.
  • Reinhold Remmert: Die Gammafunktion. Kapitel 2 in Funktionentheorie 2. Springer, Berlin 1991; mit Georg Schumacher: 3. Auflage 2007, ISBN 978-3-540-40432-3, S. 31–73.
  • Eberhard Freitag, Rolf Busam: Die Gammafunktion. Kapitel 4.1 in Funktionentheorie 1. Springer, Berlin 1993; 4. Auflage 2006, ISBN 3-540-31764-3, S. 194–212.
  • Jörg Arndt: Matters Computational, Ideas, Algorithms, Source Code. Springer-Verlag Berlin Heidelberg 2011, ISBN 978-3-642-14763-0, Seite 610

Weblinks

Einzelnachweise

  1. Brief (JPG-Datei, 136 kB) von Daniel Bernoulli an Christian Goldbach vom 6. Oktober 1729, abgedruckt in Paul Heinrich Fuss (Hrsg.): Correspondance mathématique et physique de quelques célèbres géomètres du XVIIIème siècle. (Band 2), St.-Pétersbourg 1843, S. 324–325 (französisch).
  2. Peter Luschny: Interpolating the natural factorial n! or The birth of the real factorial function (1729–1826). (Englisch).
  3. a b Brief (PDF-Datei, 118 kB) von Leonhard Euler an Christian Goldbach vom 13. Oktober 1729, abgedruckt in Paul Heinrich Fuss (Hrsg.): Correspondance mathématique et physique de quelques célèbres géomètres du XVIIIème siècle. (Band 1), St.-Pétersbourg 1843, S. 3–7 (lateinisch).
  4. a b Carl Friedrich Gauß: Disquisitiones generales circa seriem infinitam 1+… Pars I. (30. Januar 1812), Commentationes Societatis Regiae Scientiarum Gottingensis recentiores 2 (classis mathematicae), 1813, S. 26 (lateinisch; auch in Gauß: Werke. Band 3. S. 145).
  5. Brief (PDF-Datei, 211 kB) von Leonhard Euler an Christian Goldbach vom 8. Januar 1730, abgedruckt in Paul Heinrich Fuss (Hrsg.): Correspondance mathématique et physique de quelques célèbres géomètres du XVIIIème siècle. Band 1, St.-Pétersbourg 1843, S. 11–18 (lateinisch).
  6. a b Leonhard Euler: De progressionibus transcendentibus, seu quarum termini generales algebraice dari nequeunt. (28. November 1729), Commentarii academiae scientiarum imperialis Petropolitanae 5, 1738, S. 36–57 (lateinisch).
  7. Leonhard Euler: De evolutione integralium per producta infinita. (PDF-Datei, 1,2 MB), Kapitel 9 in Teil 1 des ersten Bandes von Euler: Institutionum calculi integralis. 1768, S. 225–250 (lateinisch).
  8. Adrien-Marie Legendre: Recherches sur diverses sortes d’intégrales définies. (13. November 1809), Mémoires de la classe des sciences mathématiques et physiques de l’Institut de France 10, 1809, S. 477 (französisch).
  9. Adrien-Marie Legendre: Traité des fonctions elliptiques et des intégrales Eulériennes. (Band 2), Huzard-Courcier, Paris 1826, S. 365 (französisch).
  10. O. Hölder: Ueber die Eigenschaft der Gammafunction keiner algebraischen Differentialgleichung zu genügen. 26. Juni 1886, Mathematische Annalen 28, 1887, S. 1–13.
  11. Steven B. Bank, Robert P. Kaufman: A note on Hölder’s theorem concerning the Gamma function. Mathematische Annalen 232, 1978, S. 115–120 (englisch).
  12. Karl Weierstraß: Über die Theorie der analytischen Facultäten. (20. Mai 1854), Journal für die reine und angewandte Mathematik 51, 1856, S. 36.
  13. Nielsen: Handbuch der Theorie der Gammafunktion. 1906, S. 3.
  14. Davis: Leonhard Euler’s integral: A historical profile of the gamma function. 1959, S. 867.
  15. Artin: Einführung in die Theorie der Gammafunktion. 1931, S. 31–35.
  16. Harald Bohr, Johannes Mollerup: Lærebog i matematisk Analyse III. (Lehrbuch der mathematischen Analysis III), Jul. Gjellerups Forlag, København (Kopenhagen) 1922 (dänisch).
  17. Artin: Einführung in die Theorie der Gammafunktion. 1931, S. 12–13.
  18. N. Bourbaki: Éléments de mathématique IV. Fonctions d’une variable réelle. Hermann, Paris 1951 (französisch).
  19. Konrad Knopp: Funktionentheorie II. (5. Auflage), de Gruyter, Berlin 1941, S. 47–49.
  20. Reinhold Remmert: Wielandt’s theorem about the Γ-function. The American Mathematical Monthly 103, 1996, S. 214–220 (englisch).
  21. Brief von Carl Friedrich Gauß an Friedrich Wilhelm Bessel vom 21. November 1811, abgedruckt in Arthur Auwers (Hrsg.): Briefwechsel zwischen Gauss und Bessel, Wilhelm Engelmann, Leipzig 1880, S. 151–155 (Auszug in Gauß: Werke. Band 10.1. S. 362–365).
  22. O. Schlömilch: Einiges über die Eulerischen Integrale der zweiten Art. Archiv der Mathematik und Physik 4, 1844, S. 171.
  23. Remmert: Die Gammafunktion. Kapitel 2 in Funktionentheorie 2. 2007, S. 39.
  24. E. Freitag, R. Busam: Funktionentheorie 1. Springer-Verlag, ISBN 3-540-31764-3, Seite 225.
  25. Siehe Remmert: Funktionentheorie 2. Kapitel 2, S. 51.
  26. E. E. Kummer: Beitrag zur Theorie der Function Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \Gamma(x) = \int_0^\infty\!\mathrm{e}^{-v} v^{x-1} dv} . Journal für die reine und angewandte Mathematik 35, 1847, S. 4.
  27. C. J. Malmstén: De integralibus quibusdam definitis, seriebusque infinitis. (1. Mai 1846), Journal für die reine und angewandte Mathematik 38, 1849, S. 25 (lateinisch).
  28. Ia. V. Blagouchine: Rediscovery of Malmsten’s integrals, their evaluation by contour integration methods and some related results. 2014, Ramanujan J., 35(1), 21–110, Modul:Vorlage:Handle * library URIutil invalid. Erratum-Addendum Modul:Vorlage:Handle * library URIutil invalid
  29. L. Euler: Remarques sur un beau rapport entre les séries des puissances tant directes que réciproques. (1749), Histoire de l’Académie Royale des Sciences et Belles-Lettres 17 (1761), 1768, S. 96/97 (französisch).
  30. L. Euler: Evolutio formulae integralis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \int\!x^{f-1}\mathrm dx(lx)^\frac{m}{n}} integratione a valore x=0 ad x=1 extensa. 4. Juli 1771, Novi commentarii academiae scientiarum imperialis Petropolitanae 16, 1772, S. 121 (lateinisch).
  31. Adrien-Marie Legendre: Recherches sur diverses sortes d’intégrales définies. (13. November 1809), Mémoires de la classe des sciences mathématiques et physiques de l’Institut de France 10, 1809, S. 485 (französisch).
  32. Carl Friedrich Gauß: Disquisitiones generales circa seriem infinitam 1+… Pars I. 30. Januar 1812, Commentationes Societatis Regiae Scientiarum Gottingensis recentiores 2 (classis mathematicae), 1813, S. 30 (lateinisch; auch in Gauß: Werke. Band 3, S. 150).
  33. Steven R. Finch: Mathematical constants. Cambridge University Press, Cambridge 2003, ISBN 0-521-81805-2, S. 33 (englisch).
  34. Gregory V. Chudnovsky: Contributions to the theory of transcendental numbers. American Mathematical Society, 1984, ISBN 0-8218-1500-8, S. 8 (englisch).
  35. Bernhard Riemann: Über die Anzahl der Primzahlen unter einer gegebenen Größe. (19. Oktober 1859), Monatsberichte der Königlichen Preuß. Akademie der Wissenschaften zu Berlin, 1860, S. 671–680.
  36. Paul Eugen Böhmer: Differenzengleichungen und bestimmte Integrale. K. F. Koehler, Leipzig 1939, S. 108.
  37. Otto Rudolf Rocktäschel: Methoden zur Berechnung der Gammafunktion für komplexes Argument. Dissertation, Dresden 1922, S. 14.
  38. Karl Rawer: Wave Propagation in the Ionosphere. Kluwer Academic Publishers, Dordrecht 1993, ISBN 0-7923-0775-5 (englisch).